Generalized Covariance Estimator

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-09-02 DOI:10.1080/07350015.2022.2120486
C. Gouriéroux, J. Jasiak
{"title":"Generalized Covariance Estimator","authors":"C. Gouriéroux, J. Jasiak","doi":"10.1080/07350015.2022.2120486","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2120486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义协方差估计
摘要考虑了一类具有iid误差的半参数动态模型,包括非线性混合因果-非因果向量自回归(VAR)、双自回归(DAR)和随机波动模型。为了估计表征(非线性)序列相关性的参数,我们引入了一个通用的广义协方差(GCov)估计量,它最小化了基于残差的多元组合统计量。与矩量的标准方法相比,GCov估计器具有可解释的目标函数,避免了高维矩阵的反演,一步实现了半参数效率。我们得到了GCov估计量的渐近性质,并证明了它的半参数有效性。我们还证明了相关残差组合统计量是渐近卡方分布。通过仿真研究说明了GCov估计器的有限样本性能。然后将该估计量应用于商品期货的动态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1