THE EFFECT OF MOTION FORMATION ON COOPERATIVE NAVIGATION

IF 0.8 Q3 ENGINEERING, AEROSPACE Aviation Pub Date : 2022-12-08 DOI:10.3846/aviation.2022.17552
Mohammad Saberi Tavakkoli, G. Kahe, F. Sadeghikia
{"title":"THE EFFECT OF MOTION FORMATION ON COOPERATIVE NAVIGATION","authors":"Mohammad Saberi Tavakkoli, G. Kahe, F. Sadeghikia","doi":"10.3846/aviation.2022.17552","DOIUrl":null,"url":null,"abstract":"The effect of formation movement on the performance of cooperative navigation is investigated in this paper. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results showed that the navigation error of each agent increased individually over time, and this problem is more severe for agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It is shown that the total navigation errors are improved by observing and participating the relative distance between the agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and evaluated through simulations. The collective covariance matrix is employed to form an objective function using an extended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2022.17552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of formation movement on the performance of cooperative navigation is investigated in this paper. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results showed that the navigation error of each agent increased individually over time, and this problem is more severe for agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It is shown that the total navigation errors are improved by observing and participating the relative distance between the agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and evaluated through simulations. The collective covariance matrix is employed to form an objective function using an extended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动编队对协同导航的影响
研究了编队运动对协同导航性能的影响。首先,对每个具有一定精度的智能体的惯性导航系统进行建模和仿真。初步结果表明,随着时间的推移,每个代理的导航误差都会单独增加,而对于配备较弱系统的代理来说,这个问题更为严重。为了解决这个问题,为代理实现了协作导航。结果表明,通过观察和参与Agent之间的相对距离,可以改善总导航误差。使用两个真实代理的各种模拟和实验测试支持了这一结论。通过适当的编队,可以进一步提高协同导航的性能。通过模拟研究和评估合适的地层。集合协方差矩阵用于使用扩展卡尔曼滤波器(EKF)来形成目标函数。该函数已使用牛顿法最小化,牛顿法可能是地层的解。仿真结果表明,应用最优编队轨迹可以获得更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
期刊最新文献
DETERMINATION OF LOADS IN THE ULTRALIGHT HELICOPTER BLADES RATIONAL CONTROL BY TEMPERATURE IN VORTEX ENERGY SEPARATOR UNDER DESTABILIZING EFFECTS CUSTOMER-FOCUSED AIRCRAFT SEAT DESIGN: A CASE STUDY WITH AHP-QFD SAFETY MANAGEMENT SYSTEM AND HAZARDS IN THE AIRCRAFT MAINTENANCE INDUSTRY: A SYSTEMATIC LITERATURE REVIEW IMPLEMENTATION STUDY OF A PASSIVE SAFETY FEATURE IN THE RESCUE SYSTEMS OF SMALL AIRCRAFTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1