Metamorphic history of mafic granulite and garnet-bearing amphibolite from the Oki-Dogo Island, Japan

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Island Arc Pub Date : 2023-08-24 DOI:10.1111/iar.12497
Mizuki Takahashi, Shunsuke Endo, Atsushi Kamei
{"title":"Metamorphic history of mafic granulite and garnet-bearing amphibolite from the Oki-Dogo Island, Japan","authors":"Mizuki Takahashi,&nbsp;Shunsuke Endo,&nbsp;Atsushi Kamei","doi":"10.1111/iar.12497","DOIUrl":null,"url":null,"abstract":"<p>Oki metamorphic rocks have long been considered as a constituent of the Hida Belt based on their geographic proximity, lithology, and Permo-Triassic metamorphism. However, recent geochronological studies have demonstrated that both para- and ortho-gneisses in the Oki-Dogo Island display Paleoproterozoic protolith formation and two separate phases of metamorphism at 1.85 Ga and 250–230 Ma. Consequently, the Oki metamorphic rocks are closely connected to the Paleoproterozoic massifs in the Korean Peninsula, although little is known about their pressure (P)–temperature (T) history. Here, we provide petrological data on mafic metamorphic rocks in the Oki-Dogo Island. The mafic lithologies are classified into mafic granulite, amphibolitized granulite and amphibolite. In addition, we first discover a garnet-bearing variety of amphibolite from the Oki-Dogo Island. The texture and composition of Ca amphibole suggest these rock types share a common P–T history but the dominant mineral assemblage in each rock type records different stages of metamorphism. The inferred P–T history includes two distinct events. The first event includes a low-P granulite facies stage (~900°C, 0.7–0.8 GPa) and subsequent amphibolite facies retrogression. This event is linked to the continuous compositional change of Ca amphibole from Ti-rich pargasite to hornblende/actinolite. The second event is prograde amphibolite facies metamorphism, which is associated with the formation of tschermakitic hornblende and calcic plagioclase. In high Fe/(Mg + Fe) rocks, garnet was formed at ~550–580°C, 0.45–0.50 GPa in this stage. Depending on the age of the first event, the low-P granulite facies metamorphism is likely to have occurred in a similar tectonic setting as the Paleoproterozoic crustal metamorphism in the Yeongnam Massif or the Permo-Triassic ultrahigh-T metamorphism in the northern Gyeonggi Massif.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12497","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oki metamorphic rocks have long been considered as a constituent of the Hida Belt based on their geographic proximity, lithology, and Permo-Triassic metamorphism. However, recent geochronological studies have demonstrated that both para- and ortho-gneisses in the Oki-Dogo Island display Paleoproterozoic protolith formation and two separate phases of metamorphism at 1.85 Ga and 250–230 Ma. Consequently, the Oki metamorphic rocks are closely connected to the Paleoproterozoic massifs in the Korean Peninsula, although little is known about their pressure (P)–temperature (T) history. Here, we provide petrological data on mafic metamorphic rocks in the Oki-Dogo Island. The mafic lithologies are classified into mafic granulite, amphibolitized granulite and amphibolite. In addition, we first discover a garnet-bearing variety of amphibolite from the Oki-Dogo Island. The texture and composition of Ca amphibole suggest these rock types share a common P–T history but the dominant mineral assemblage in each rock type records different stages of metamorphism. The inferred P–T history includes two distinct events. The first event includes a low-P granulite facies stage (~900°C, 0.7–0.8 GPa) and subsequent amphibolite facies retrogression. This event is linked to the continuous compositional change of Ca amphibole from Ti-rich pargasite to hornblende/actinolite. The second event is prograde amphibolite facies metamorphism, which is associated with the formation of tschermakitic hornblende and calcic plagioclase. In high Fe/(Mg + Fe) rocks, garnet was formed at ~550–580°C, 0.45–0.50 GPa in this stage. Depending on the age of the first event, the low-P granulite facies metamorphism is likely to have occurred in a similar tectonic setting as the Paleoproterozoic crustal metamorphism in the Yeongnam Massif or the Permo-Triassic ultrahigh-T metamorphism in the northern Gyeonggi Massif.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日本御木道吾岛镁铁质麻粒岩和含石榴石角闪岩的变质史
Oki变质岩长期以来被认为是Hida带的一个组成部分,基于它们的地理邻近性、岩性和二叠纪-三叠纪变质作用。然而,最近的地质年代学研究表明,Oki - Dogo岛的准片麻岩和正片麻岩均显示古元古代的原岩形成,并在1.85 Ga和250-230 Ma两个不同的变质阶段。因此,Oki变质岩与朝鲜半岛的古元古代地块有着密切的联系,尽管对它们的压力(P) -温度(T)历史知之甚少。在此,我们提供了Oki - Dogo岛基性变质岩的岩石学数据。基性岩岩性分为基性麻粒岩、角闪岩化麻粒岩和角闪岩。此外,我们首次在Oki - Dogo岛发现了一种含石榴石的角闪岩。Ca角闪洞的结构和组成表明这些岩石类型具有共同的P-T历史,但每种岩石类型的主要矿物组合记录了不同的变质阶段。推断的P-T历史包括两个不同的事件。第一个事件包括低磷麻粒岩相阶段(~900°C, 0.7-0.8 GPa)和随后的角闪岩相退退。这一事件与Ca角闪洞从富钛寄生石到角闪石/放光石的连续组成变化有关。第二个事件为进阶角闪岩相变质作用,与闪质角闪石和钙质斜长石的形成有关。在高Fe/(Mg + Fe)岩石中,石榴石形成于~550 ~ 580℃,0.45 ~ 0.50 GPa。根据第一次事件的年龄,低磷麻粒岩相变质作用可能发生在与岭南地块古元古代地壳变质作用或京畿地块北部二叠纪-三叠纪超高铁变质作用相似的构造环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Island Arc
Island Arc 地学-地球科学综合
CiteScore
2.90
自引率
26.70%
发文量
32
审稿时长
>12 weeks
期刊介绍: Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication. Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.
期刊最新文献
Spatial and Temporal Exhumation of the Northeastern China: Insights From Low Temperature Thermochronology Preface for the Thematic Issue: Tectono-Magmatic-Metallogenesis in Eastern China Zircon Trace-Element Compositions in Cenozoic Granitoids in Japan: Revised Discrimination Diagrams for Zircons in I-Type, S-Type, and A-Type Granites Correction to “Bringing the Submarine Mariana Arc and Backarc Basin to Life for Undergraduates and the Public” Recent Efforts to Improve the Accuracy and Precision of Carbonate Clumped-Isotope Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1