A Review Study of Numerical Simulation of Lid-Driven Cavity Flow with Nanofluids

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-04-01 DOI:10.1166/jon.2023.1930
Mustaque Hussain Borbora, B. Vasu, Ali J. Chamkha
{"title":"A Review Study of Numerical Simulation of Lid-Driven Cavity Flow with Nanofluids","authors":"Mustaque Hussain Borbora, B. Vasu, Ali J. Chamkha","doi":"10.1166/jon.2023.1930","DOIUrl":null,"url":null,"abstract":"Perhaps the most deliberated fluid problem in the field of Computational Fluid Dynamics is the lid driven cavity flow whose simple geometry is used to study the thermal behavior of many engineering applications such as cooling of electronic equipment, solar collectors, thermal storage\n systems, food processing, solar ponds, crystal growth, lubrication technologies and cooling of electrical and mechanical components. Researchers have been devoting much of their time in order to discover innovative methods to enhance the thermal conductivity of conventional fluids. With the\n development of nanotechnology, the concept of nanofluids has gained ground considerably as a new kind of heat transfer fluid. Nanofluid is a new kind of fluid with high thermal conductivity is a mixture of solid nanoparticles and a liquid. This review recapitulates the recent progress of the\n various numerical methods that are used in predicting the influence of several parameters such as type of nanoparticle and host liquid, particle volume concentration, particle size and shape, Brownian diffusion and thermophoresis effect on hydrodynamic and thermal characteristics of convective\n heat transfer using nanofluids in a lid driven cavity.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Perhaps the most deliberated fluid problem in the field of Computational Fluid Dynamics is the lid driven cavity flow whose simple geometry is used to study the thermal behavior of many engineering applications such as cooling of electronic equipment, solar collectors, thermal storage systems, food processing, solar ponds, crystal growth, lubrication technologies and cooling of electrical and mechanical components. Researchers have been devoting much of their time in order to discover innovative methods to enhance the thermal conductivity of conventional fluids. With the development of nanotechnology, the concept of nanofluids has gained ground considerably as a new kind of heat transfer fluid. Nanofluid is a new kind of fluid with high thermal conductivity is a mixture of solid nanoparticles and a liquid. This review recapitulates the recent progress of the various numerical methods that are used in predicting the influence of several parameters such as type of nanoparticle and host liquid, particle volume concentration, particle size and shape, Brownian diffusion and thermophoresis effect on hydrodynamic and thermal characteristics of convective heat transfer using nanofluids in a lid driven cavity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盖驱动腔体流动纳米流体数值模拟研究进展
也许在计算流体动力学领域中最被考虑的流体问题是盖子驱动的腔流,其简单的几何结构被用来研究许多工程应用的热行为,如电子设备的冷却、太阳能集热器、储热系统、食品加工、太阳能池、晶体生长、润滑技术以及电气和机械部件的冷却。研究人员已经投入了大量的时间,以发现创新的方法来提高传统流体的导热性。随着纳米技术的发展,纳米流体作为一种新型的传热流体得到了广泛的应用。纳米流体是固体纳米颗粒与液体的混合物,是一种具有高导热性的新型流体。本文综述了各种数值方法的最新进展,这些方法用于预测纳米颗粒类型和宿主液体、颗粒体积浓度、颗粒大小和形状、布朗扩散和热电泳效应等参数对盖驱动腔内纳米流体对流换热特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1