HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES

Q3 Economics, Econometrics and Finance Applied Computer Science Pub Date : 2023-06-30 DOI:10.35784/acs-2023-18
Mouna Tarik, Ayoub Mniai, K. Jebari
{"title":"HYBRID FEATURE SELECTION AND SUPPORT VECTOR MACHINE FRAMEWORK FOR PREDICTING MAINTENANCE FAILURES","authors":"Mouna Tarik, Ayoub Mniai, K. Jebari","doi":"10.35784/acs-2023-18","DOIUrl":null,"url":null,"abstract":"The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as oversampling and features selection for failure prediction, is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For features selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation is used in literature; it is applied to aircraft engine sensors measurements to predict engines failure, while the predicting algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2023-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of predictive maintenance is to minimize downtime, failure risks and maintenance costs in manufacturing systems. Over the past few years, machine learning methods gained ground with diverse and successful applications in the area of predictive maintenance. This study shows that performing preprocessing techniques such as oversampling and features selection for failure prediction, is promising. For instance, to handle imbalanced data, the SMOTE-Tomek method is used. For features selection, three different methods can be applied: Recursive Feature Elimination, Random Forest and Variance Threshold. The data considered in this paper for simulation is used in literature; it is applied to aircraft engine sensors measurements to predict engines failure, while the predicting algorithm used is a Support Vector Machine. The results show that classification accuracy can be significantly boosted by using the preprocessing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维修故障预测的混合特征选择和支持向量机框架
预测性维护的主要目的是最大限度地减少制造系统的停机时间、故障风险和维护成本。在过去的几年中,机器学习方法在预测性维护领域获得了广泛而成功的应用。该研究表明,采用过采样和特征选择等预处理技术进行故障预测是有前途的。例如,为了处理不平衡数据,使用SMOTE-Tomek方法。对于特征选择,可以采用三种不同的方法:递归特征消除法、随机森林法和方差阈值法。本文所考虑的模拟数据已在文献中使用;将其应用于飞机发动机传感器的测量中进行发动机故障预测,使用的预测算法是支持向量机。结果表明,采用预处理技术可以显著提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1