MicroRNA-7a2 is required for the development of pituitary stem cells.

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Stem cells and development Pub Date : 2022-06-02 DOI:10.1089/scd.2022.0023
Jinglin Zhang, Yewen Zhou, Jiajia Guo, Liuhui Li, Hui Liu, Chenyang Lu, Ying Jiang, S. Cui
{"title":"MicroRNA-7a2 is required for the development of pituitary stem cells.","authors":"Jinglin Zhang, Yewen Zhou, Jiajia Guo, Liuhui Li, Hui Liu, Chenyang Lu, Ying Jiang, S. Cui","doi":"10.1089/scd.2022.0023","DOIUrl":null,"url":null,"abstract":"The pituitary gland is inhabited by a subpopulation of SOX2+ stem cells. However, the regulatory mechanisms underlying pituitary stem cell development remain poorly understood. Here, we demonstrate that microRNA-7a (miR-7a) is enriched in the developing pituitary and is spatiotemporally expressed in the pituitary stem cells. Constitutive deletion of miR-7a2 in mice results in pituitary dysplasia emerging during birth, which is primarily manifested as malformed anterior lobes. Using immunofluorescence, immunohistochemistry or in situ hybridization, we observe that the specification of hormone-expressing cells is not impeded post miR-7a2 deletion at birth, although the terminal differentiation of gonadotropes is inhibited. Further investigation of neonatal and adult pituitaries in miR-7a2 knockout mice reveals an expansion of the SOX2+ pituitary stem cell compartment. The inhibition of epithelial-mesenchymal like transition seems to be responsible for this phenotype, rather than abnormal proliferation or apoptosis. Furthermore, our data suggest that Gli3 and Ckap4 are potential targets of miR-7a in pituitary stem cells. In summary, our results identify miR-7a2 as a crucial factor involved in pituitary stem cell development.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

The pituitary gland is inhabited by a subpopulation of SOX2+ stem cells. However, the regulatory mechanisms underlying pituitary stem cell development remain poorly understood. Here, we demonstrate that microRNA-7a (miR-7a) is enriched in the developing pituitary and is spatiotemporally expressed in the pituitary stem cells. Constitutive deletion of miR-7a2 in mice results in pituitary dysplasia emerging during birth, which is primarily manifested as malformed anterior lobes. Using immunofluorescence, immunohistochemistry or in situ hybridization, we observe that the specification of hormone-expressing cells is not impeded post miR-7a2 deletion at birth, although the terminal differentiation of gonadotropes is inhibited. Further investigation of neonatal and adult pituitaries in miR-7a2 knockout mice reveals an expansion of the SOX2+ pituitary stem cell compartment. The inhibition of epithelial-mesenchymal like transition seems to be responsible for this phenotype, rather than abnormal proliferation or apoptosis. Furthermore, our data suggest that Gli3 and Ckap4 are potential targets of miR-7a in pituitary stem cells. In summary, our results identify miR-7a2 as a crucial factor involved in pituitary stem cell development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MicroRNA-7a2是垂体干细胞发育所必需的。
垂体内有SOX2+干细胞亚群。然而,垂体干细胞发育的调控机制仍知之甚少。在这里,我们证明了微小RNA-7a(miR-7a)在发育中的垂体中富集,并在垂体干细胞中时空表达。小鼠miR-7a2的组成性缺失导致出生时出现垂体发育不良,主要表现为畸形的前叶。使用免疫荧光、免疫组织化学或原位杂交,我们观察到,尽管促性腺激素的末端分化受到抑制,但出生时miR-7a2缺失后,激素表达细胞的规格没有受到阻碍。对miR-7a2敲除小鼠的新生儿和成人垂体的进一步研究揭示了SOX2+垂体干细胞区室的扩张。上皮-间充质样转变的抑制似乎是这种表型的原因,而不是异常增殖或凋亡。此外,我们的数据表明,Gli3和Ckap4是垂体干细胞中miR-7a的潜在靶点。总之,我们的研究结果表明miR-7a2是参与垂体干细胞发育的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
期刊最新文献
Human Adipose-derived Mesenchymal Stem Cells Colonize and Promote Healing of Leprosy Ulcer by Inducing Neuro-vascularization. FoxO3 regulates mouse bone mesenchymal stem cell fate and bone-fat balance during skeletal aging. Correction to: The Essence of Quiescence, by Peter Quesenberry et al., Stem Cells Dev 2024;33(7-8):149-152; doi: 10.1089/scd.2024.0032. Key Roles of Gli1 and Ihh Signaling in Craniofacial Development. Low initial cell density promotes the differentiation and maturation of human pluripotent stem cells into erythrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1