An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis
{"title":"An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis","authors":"Jun-Xia Li, Shuai Ge, Yi-Jing Lu, Xiao-Jie Xu, Chan-Hua Liu, Shihui Li","doi":"10.1515/zkri-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract A new cobalt(II) compound with the formula [Co(5-Br-pyc)(2,2′-bipy)(H2O)(Cl)]·2H2O (1·H2O) (5-Br-Hpyc = 5-bromo-pyridine-2-carboxylic acid, 2,2′-bipy = 2,2′-bipyridine) has been hydrothermally synthesized and well characterized. The X-ray single-crystal diffraction analysis showed that 1⋅2H2O has crystallizes in the monoclinic system, space group P21/c (no. 14). The Co(II) center was octahedrally bonded by one bidentate chelate 5-Br-pyc anion and one 2,2′-bipy, one water molecule as well as one chloride anion to form the mononuclear structure of 1⋅2H2O. Complex 1⋅2H2O forms a 3D network through abundant O–H⋅⋅⋅O hydrogen bonds and π⋅⋅⋅π stacking interactions. Notably, the 5-Br-Hpyc ligand was in situ generated by decarboxylation of the 3-bromo-pyridine-2,6-dicarboxylic acid (3-Br-H2pydc) precursor selectively on 2-position under hydrothermal conditions. The magnetic properties, the Hirshfeld surface structure and the synthetic process for 1⋅2H2O have been carefully described and discussed.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"238 1","pages":"139 - 149"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2023-0001","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A new cobalt(II) compound with the formula [Co(5-Br-pyc)(2,2′-bipy)(H2O)(Cl)]·2H2O (1·H2O) (5-Br-Hpyc = 5-bromo-pyridine-2-carboxylic acid, 2,2′-bipy = 2,2′-bipyridine) has been hydrothermally synthesized and well characterized. The X-ray single-crystal diffraction analysis showed that 1⋅2H2O has crystallizes in the monoclinic system, space group P21/c (no. 14). The Co(II) center was octahedrally bonded by one bidentate chelate 5-Br-pyc anion and one 2,2′-bipy, one water molecule as well as one chloride anion to form the mononuclear structure of 1⋅2H2O. Complex 1⋅2H2O forms a 3D network through abundant O–H⋅⋅⋅O hydrogen bonds and π⋅⋅⋅π stacking interactions. Notably, the 5-Br-Hpyc ligand was in situ generated by decarboxylation of the 3-bromo-pyridine-2,6-dicarboxylic acid (3-Br-H2pydc) precursor selectively on 2-position under hydrothermal conditions. The magnetic properties, the Hirshfeld surface structure and the synthetic process for 1⋅2H2O have been carefully described and discussed.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.