{"title":"Big data-assisted urban governance: forecasting social events with a periodicity by employing different time series algorithms","authors":"Zicheng Zhang, Xinyue Lin, Shaonan Shan, Zhaokai Yin","doi":"10.1108/lht-12-2022-0550","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore, mitigate and resolve social problems.Design/methodology/approachIn this study, social problems were determined and analyzed by using the time attributes of government hotline data. Social public events with periodicity were quantitatively analyzed via the Prophet model. The Prophet model is decided after running a comparison study with other widely applied time series models. The validation of modeling and forecast was conducted for social events such as travel and educational services, human resources and public health.FindingsThe results show that the Prophet algorithm could generate relatively the best performance. Besides, the four types of social events showed obvious trends with periodicities and holidays and have strong interpretable results.Originality/valueThe research could help government departments pay attention to time dependency and periodicity features of the hotline data and be aware of early warnings of social events following periodicity and holidays, enabling them to rationally allocate resources to handle upcoming social events and problems and better promoting the role of the big data structure of government hotline data sets in urban governance innovations.","PeriodicalId":47196,"journal":{"name":"Library Hi Tech","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Library Hi Tech","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/lht-12-2022-0550","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore, mitigate and resolve social problems.Design/methodology/approachIn this study, social problems were determined and analyzed by using the time attributes of government hotline data. Social public events with periodicity were quantitatively analyzed via the Prophet model. The Prophet model is decided after running a comparison study with other widely applied time series models. The validation of modeling and forecast was conducted for social events such as travel and educational services, human resources and public health.FindingsThe results show that the Prophet algorithm could generate relatively the best performance. Besides, the four types of social events showed obvious trends with periodicities and holidays and have strong interpretable results.Originality/valueThe research could help government departments pay attention to time dependency and periodicity features of the hotline data and be aware of early warnings of social events following periodicity and holidays, enabling them to rationally allocate resources to handle upcoming social events and problems and better promoting the role of the big data structure of government hotline data sets in urban governance innovations.
期刊介绍:
■Integrated library systems ■Networking ■Strategic planning ■Policy implementation across entire institutions ■Security ■Automation systems ■The role of consortia ■Resource access initiatives ■Architecture and technology ■Electronic publishing ■Library technology in specific countries ■User perspectives on technology ■How technology can help disabled library users ■Library-related web sites