Comparing results of real-scale time MHD modeling with observational data for first flare M 1.9 in AR 10365

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Open Astronomy Pub Date : 2022-01-01 DOI:10.1515/astro-2022-0008
Alexey Vasilevich Borisenko, Igor Maksimovich Podgorny, A. Podgorny
{"title":"Comparing results of real-scale time MHD modeling with observational data for first flare M 1.9 in AR 10365","authors":"Alexey Vasilevich Borisenko, Igor Maksimovich Podgorny, A. Podgorny","doi":"10.1515/astro-2022-0008","DOIUrl":null,"url":null,"abstract":"Abstract As shown in the first results of MHD simulations in the real scale of time, above the active region (AR) 10365, during the first flare M 1.9 (05/26/2003 05:34) at a height of 16–18 mm (lower corona), a singular line of magnetic field appears. The local maximum of the current density is situated on this singular line. The magnetic field in the vicinity of this singular line is the superposition of an X-type magnetic configuration and a divergent magnetic field. The accumulation of magnetic energy for solar flare with current sheet creation takes place near this singular line due to magnetic field deformation by disturbances in the X-type configuration in spite of the presence of overlaid diverging magnetic configuration. The magnetic configuration is so complicated that the singular line can be found only by using specially developed graphical system of search. The position of singular line coincides with position of source of flare radio emission at the frequency 17 GHz above AR 10365 measured by Nobeyama Radioheliograph (NoRH). Also, MHD simulation shows appearance of the singular line, in the vicinity of which X-type configuration dominates. However, apparently due to small disturbance, propagating from the photosphere, sufficient magnetic energy was not accumulated in this configuration, so the NoRH does not show the flare source of emission at the frequency 17 GHz in the place, where this singular line is situated.","PeriodicalId":19514,"journal":{"name":"Open Astronomy","volume":"31 1","pages":"58 - 66"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/astro-2022-0008","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract As shown in the first results of MHD simulations in the real scale of time, above the active region (AR) 10365, during the first flare M 1.9 (05/26/2003 05:34) at a height of 16–18 mm (lower corona), a singular line of magnetic field appears. The local maximum of the current density is situated on this singular line. The magnetic field in the vicinity of this singular line is the superposition of an X-type magnetic configuration and a divergent magnetic field. The accumulation of magnetic energy for solar flare with current sheet creation takes place near this singular line due to magnetic field deformation by disturbances in the X-type configuration in spite of the presence of overlaid diverging magnetic configuration. The magnetic configuration is so complicated that the singular line can be found only by using specially developed graphical system of search. The position of singular line coincides with position of source of flare radio emission at the frequency 17 GHz above AR 10365 measured by Nobeyama Radioheliograph (NoRH). Also, MHD simulation shows appearance of the singular line, in the vicinity of which X-type configuration dominates. However, apparently due to small disturbance, propagating from the photosphere, sufficient magnetic energy was not accumulated in this configuration, so the NoRH does not show the flare source of emission at the frequency 17 GHz in the place, where this singular line is situated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ar10365第一次耀斑m1.9的实时MHD模拟结果与观测资料的比较
在实际时间尺度上的MHD模拟结果显示,在第一次耀斑m1.9(05/26/2003 05:34)的16-18 mm高度(下日冕)上,在活动区(AR) 10365上方出现了一条奇异的磁场线。电流密度的局部最大值位于这条奇异线上。这条奇异线附近的磁场是x型磁场构型和发散磁场的叠加。太阳耀斑的磁能积累与电流片的形成发生在这条奇异线附近,这是由于x型结构中的磁场变形引起的,尽管存在覆盖的发散磁结构。磁位是如此复杂,奇异线只能用专门开发的图形搜索系统才能找到。奇异线的位置与Nobeyama Radioheliograph (NoRH)测量到的ar10365上空17 GHz频率的耀斑射电发射源位置重合。MHD模拟还显示了奇异线的出现,在奇异线附近,x型结构占主导地位。然而,显然由于从光球传播的小干扰,在这个配置中没有积累足够的磁能,因此在奇异线所在的地方,NoRH没有显示频率为17 GHz的耀斑发射源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Astronomy
Open Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
1.30
自引率
14.30%
发文量
37
审稿时长
16 weeks
期刊介绍: The journal disseminates research in both observational and theoretical astronomy, astrophysics, solar physics, cosmology, galactic and extragalactic astronomy, high energy particles physics, planetary science, space science and astronomy-related astrobiology, presenting as well the surveys dedicated to astronomical history and education.
期刊最新文献
A novel autonomous navigation constellation in the Earth–Moon system Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius Intelligent collision avoidance strategy for all-electric propulsion GEO satellite orbit transfer control Stability of granular media impacts morphological characteristics under different impact conditions Parallel observations process of Tianwen-1 orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1