Nan Zhang, Emmanuel Addai, Lingling Zhang, M. Ngungu, E. Marinda, Joshua Kiddy K. Asamoah
{"title":"FRACTIONAL MODELING AND NUMERICAL SIMULATION FOR UNFOLDING MARBURG–MONKEYPOX VIRUS CO-INFECTION TRANSMISSION","authors":"Nan Zhang, Emmanuel Addai, Lingling Zhang, M. Ngungu, E. Marinda, Joshua Kiddy K. Asamoah","doi":"10.1142/s0218348x2350086x","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a deterministic mathematical model of Marburg–Monkeypox virus co-infection transmission under the Caputo fractional-order derivative. We discussed the dynamics behavior of the model and carried out qualitative and quantitative analysis, including the positivity–boundedness of solution, and the basic reproduction number [Formula: see text]. In addition, the Banach and Schauder-type fixed point theorem is utilized to explore the existence–uniqueness of the solution in the suggested model and the proposed model stability under the Ulam–Hyers condition is demonstrated. In numerical simulation, the Predictor–Corrector method is used to determine the numerical solutions. According to the numerical result, increasing the rate of quarantine and detecting unknown Marburg virus, will be the most effective control intervention to reduce Marburg and Monkeypox virus transmission in the population.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x2350086x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we investigate a deterministic mathematical model of Marburg–Monkeypox virus co-infection transmission under the Caputo fractional-order derivative. We discussed the dynamics behavior of the model and carried out qualitative and quantitative analysis, including the positivity–boundedness of solution, and the basic reproduction number [Formula: see text]. In addition, the Banach and Schauder-type fixed point theorem is utilized to explore the existence–uniqueness of the solution in the suggested model and the proposed model stability under the Ulam–Hyers condition is demonstrated. In numerical simulation, the Predictor–Corrector method is used to determine the numerical solutions. According to the numerical result, increasing the rate of quarantine and detecting unknown Marburg virus, will be the most effective control intervention to reduce Marburg and Monkeypox virus transmission in the population.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.