{"title":"Locally active globally stable dynamical systems: Theory, learning, and experiments","authors":"Nadia Figueroa, A. Billard","doi":"10.1177/02783649211030952","DOIUrl":null,"url":null,"abstract":"State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"312 - 347"},"PeriodicalIF":7.5000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211030952","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 10
Abstract
State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.