Sepehr Abbasi Zadeh, Farid Zandi, Mohammad Amin Beiruti, Yashar Ganjali
{"title":"Load migration in distributed softwarized network controllers","authors":"Sepehr Abbasi Zadeh, Farid Zandi, Mohammad Amin Beiruti, Yashar Ganjali","doi":"10.1002/nem.2214","DOIUrl":null,"url":null,"abstract":"<p>Distributed control solutions were introduced to address controller reliability and scalability issues in software-defined networking (SDN). The dynamic nature of network traffic can lead to load imbalance among controller instances. A highly loaded controller instance can be slow in responding to datapath queries and can slow down the entire control platform, as state synchronization and consensus among controller instances are performed in a cooperative manner. In this paper, we present Efficient, Resilient, Consistent (ERC), a novel protocol for migrating the load of a given switch from a controller instance to a different instance. Our protocol has three distinguishing properties compared with prior works in this area: (1) It is resilient to failures during migration, (2) it maintains consistency among all controller instances, and nevertheless, (3) it is more efficient than existing load migration protocols. Compared with state-of-the-art, ERC reduces the migration time by 23–50% depending on network load. The implicit assumed use case in the design of previous load migration algorithms (including ERC) has been the load balancing scenario. However, as this is not the only possible case, by maintaining the desirable properties of ERC, we introduce four variants of our protocol that can add to the versatility of the load migration handling. This is achieved by considering variations of role exchange between controller instances, which gives us an advantage over the fixed master–slave exchange that vanilla ERC or previous work support. We perform an extensive set of experiments to examine the impact of variable network parameters on the performance metrics of interest and to show the effectiveness of the ERC family of protocols in load migration.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"32 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Distributed control solutions were introduced to address controller reliability and scalability issues in software-defined networking (SDN). The dynamic nature of network traffic can lead to load imbalance among controller instances. A highly loaded controller instance can be slow in responding to datapath queries and can slow down the entire control platform, as state synchronization and consensus among controller instances are performed in a cooperative manner. In this paper, we present Efficient, Resilient, Consistent (ERC), a novel protocol for migrating the load of a given switch from a controller instance to a different instance. Our protocol has three distinguishing properties compared with prior works in this area: (1) It is resilient to failures during migration, (2) it maintains consistency among all controller instances, and nevertheless, (3) it is more efficient than existing load migration protocols. Compared with state-of-the-art, ERC reduces the migration time by 23–50% depending on network load. The implicit assumed use case in the design of previous load migration algorithms (including ERC) has been the load balancing scenario. However, as this is not the only possible case, by maintaining the desirable properties of ERC, we introduce four variants of our protocol that can add to the versatility of the load migration handling. This is achieved by considering variations of role exchange between controller instances, which gives us an advantage over the fixed master–slave exchange that vanilla ERC or previous work support. We perform an extensive set of experiments to examine the impact of variable network parameters on the performance metrics of interest and to show the effectiveness of the ERC family of protocols in load migration.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.