Anthracnose Resistance in Legumes for Cropping System Diversification

IF 6 2区 生物学 Q1 PLANT SCIENCES Critical Reviews in Plant Sciences Pub Date : 2023-07-03 DOI:10.1080/07352689.2023.2228122
A. Pandey, Abhishek Kumar, E. Mbeyagala, M. J. Barbetti, A. Basandrai, D. Basandrai, R. Nair, J. Lamichhane
{"title":"Anthracnose Resistance in Legumes for Cropping System Diversification","authors":"A. Pandey, Abhishek Kumar, E. Mbeyagala, M. J. Barbetti, A. Basandrai, D. Basandrai, R. Nair, J. Lamichhane","doi":"10.1080/07352689.2023.2228122","DOIUrl":null,"url":null,"abstract":"Abstract Anthracnose, caused by hemibiotrophic Colletotrichum spp., is a destructive disease of legumes and many other crops worldwide. Colletotrichum spp. constitute one of the top 10 phytopathogenic fungi, infecting ∼3,000 plant species, attacking food and forage legume crops at all growth stages; including seed, seedlings, young, and mature plants; with consequent significant yield reductions. Presently, cultural practices and substantial use of synthetic fungicides are the most prevalent approaches for anthracnose management. In addition, there has been a strong focus toward developing advanced breeding lines and cultivars with improved anthracnose resistance. This has involved traditional breeding resulting in a wide range of anthracnose resistance resources being identified, particularly using advanced techniques within the common bean, soybean, lentil, mungbean, blackgram, and lupins. For instance, quantitative trait loci (QTLs) for resistance have been identified, enabling marker-assisted resistance breeding. More recently, molecular approaches; including genomics, transcriptomics, proteomics, and metabolomics; have been utilized to understand the pathogenesis and defense mechanisms involved in the Colletotrichum-legume interaction. Genetic manipulation through omics offers scope to better protect legumes from anthracnose by improving the efficiency of breeding programs. This review focuses on key pathogens (viz., C. truncatum, C. lentis, C. lupini, and C. lindemuthianum) causing anthracnose in legumes, their biology, and epidemiology, the disease management levers embracing progress with host resistance, genetic and breeding approaches, and highlights critical knowledge gaps in conventional and molecular breeding programs. We conclude that the ongoing progress toward developing breeding lines/cultivars/donors with improved resistance in legume plant responses against anthracnose using omics approaches offers novel insights into legume-anthracnose pathogen interactions and ensures more sustainable and effective disease management strategies for the future.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2023.2228122","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Anthracnose, caused by hemibiotrophic Colletotrichum spp., is a destructive disease of legumes and many other crops worldwide. Colletotrichum spp. constitute one of the top 10 phytopathogenic fungi, infecting ∼3,000 plant species, attacking food and forage legume crops at all growth stages; including seed, seedlings, young, and mature plants; with consequent significant yield reductions. Presently, cultural practices and substantial use of synthetic fungicides are the most prevalent approaches for anthracnose management. In addition, there has been a strong focus toward developing advanced breeding lines and cultivars with improved anthracnose resistance. This has involved traditional breeding resulting in a wide range of anthracnose resistance resources being identified, particularly using advanced techniques within the common bean, soybean, lentil, mungbean, blackgram, and lupins. For instance, quantitative trait loci (QTLs) for resistance have been identified, enabling marker-assisted resistance breeding. More recently, molecular approaches; including genomics, transcriptomics, proteomics, and metabolomics; have been utilized to understand the pathogenesis and defense mechanisms involved in the Colletotrichum-legume interaction. Genetic manipulation through omics offers scope to better protect legumes from anthracnose by improving the efficiency of breeding programs. This review focuses on key pathogens (viz., C. truncatum, C. lentis, C. lupini, and C. lindemuthianum) causing anthracnose in legumes, their biology, and epidemiology, the disease management levers embracing progress with host resistance, genetic and breeding approaches, and highlights critical knowledge gaps in conventional and molecular breeding programs. We conclude that the ongoing progress toward developing breeding lines/cultivars/donors with improved resistance in legume plant responses against anthracnose using omics approaches offers novel insights into legume-anthracnose pathogen interactions and ensures more sustainable and effective disease management strategies for the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作物系统多样化对豆科植物炭疽病抗性的影响
摘要炭疽病是由半生物营养型炭疽菌引起的,是世界范围内豆类和许多其他作物的破坏性疾病。Colletotrichum spp.是十大植物病原真菌之一,感染约3000种植物,在所有生长阶段攻击粮食和饲料豆类作物;包括种子、幼苗、幼苗和成熟植物;从而显著降低产量。目前,栽培实践和大量使用合成杀菌剂是炭疽病管理最普遍的方法。此外,人们一直非常关注开发具有改善炭疽病抗性的先进育种系和品种。这涉及到传统育种,从而确定了广泛的炭疽病抗性资源,特别是在普通大豆、大豆、扁豆、绿豆、黑豆和羽扇豆中使用先进技术。例如,已经鉴定了抗性的数量性状基因座(QTL),使标记辅助抗性育种成为可能。最近,分子方法;包括基因组学、转录组学、蛋白质组学和代谢组学;已被用于了解炭疽菌-豆类相互作用的发病机制和防御机制。通过组学进行基因操作,通过提高育种计划的效率,为更好地保护豆类免受炭疽病的侵袭提供了空间。这篇综述的重点是导致豆类炭疽病的关键病原体(即元宝茎C.truncatum、扁豆C.lentis、羽扇豆C.lupini和lindemuthianum)、它们的生物学和流行病学、包括宿主抗性进展的疾病管理杠杆、遗传和育种方法,并强调了传统和分子育种计划中的关键知识差距。我们得出的结论是,使用组学方法开发具有改善豆类植物对炭疽病反应抗性的育种系/品种/供体的持续进展为豆类炭疽病病原体相互作用提供了新的见解,并确保了未来更可持续和有效的疾病管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.90
自引率
1.40%
发文量
15
审稿时长
>12 weeks
期刊介绍: Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.
期刊最新文献
Advances in Antisense Oligo Technology for Sustainable Crop Protection Role of Exogenous Melatonin in Plant Biotechnology: Physiological and Applied Aspects Integration of the Plant-Specific PLATZ Transcription Factors into Gene Regulatory Networks Controlling Developmental Processes Harnessing the Transcriptomic Resources of Millets to Decipher Climate Resilience and Nutrient Enrichment Traits From Salinity to Nutrient-Rich Vegetables: Strategies for Quality Enhancement in Protected Cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1