The IllustrisTNG simulations: public data release

Dylan Nelson, Volker Springel, Annalisa Pillepich, Vicente Rodriguez-Gomez, Paul Torrey, Shy Genel, Mark Vogelsberger, Ruediger Pakmor, Federico Marinacci, Rainer Weinberger, Luke Kelley, Mark Lovell, Benedikt Diemer, Lars Hernquist
{"title":"The IllustrisTNG simulations: public data release","authors":"Dylan Nelson,&nbsp;Volker Springel,&nbsp;Annalisa Pillepich,&nbsp;Vicente Rodriguez-Gomez,&nbsp;Paul Torrey,&nbsp;Shy Genel,&nbsp;Mark Vogelsberger,&nbsp;Ruediger Pakmor,&nbsp;Federico Marinacci,&nbsp;Rainer Weinberger,&nbsp;Luke Kelley,&nbsp;Mark Lovell,&nbsp;Benedikt Diemer,&nbsp;Lars Hernquist","doi":"10.1186/s40668-019-0028-x","DOIUrl":null,"url":null,"abstract":"<p>We present the full public release of all data from the TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code <span>Arepo</span>. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive black holes from early time to the present day, <span>\\(z=0\\)</span>. Each of the flagship runs—TNG50, TNG100, and TNG300—are accompanied by halo/subhalo catalogs, merger trees, lower-resolution and dark-matter only counterparts, all available with 100 snapshots. We discuss scientific and numerical cautions and caveats relevant when using TNG.</p><p>The data volume now directly accessible online is ~750 TB, including 1200 full volume snapshots and ~80,000 high time-resolution subbox snapshots. This will increase to ~1.1 PB with the future release of TNG50. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform enabling user computation with local access to TNG data, alleviating the need to download large datasets.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":"6 1","pages":""},"PeriodicalIF":16.2810,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-019-0028-x","citationCount":"415","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-019-0028-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 415

Abstract

We present the full public release of all data from the TNG100 and TNG300 simulations of the IllustrisTNG project. IllustrisTNG is a suite of large volume, cosmological, gravo-magnetohydrodynamical simulations run with the moving-mesh code Arepo. TNG includes a comprehensive model for galaxy formation physics, and each TNG simulation self-consistently solves for the coupled evolution of dark matter, cosmic gas, luminous stars, and supermassive black holes from early time to the present day, \(z=0\). Each of the flagship runs—TNG50, TNG100, and TNG300—are accompanied by halo/subhalo catalogs, merger trees, lower-resolution and dark-matter only counterparts, all available with 100 snapshots. We discuss scientific and numerical cautions and caveats relevant when using TNG.

The data volume now directly accessible online is ~750 TB, including 1200 full volume snapshots and ~80,000 high time-resolution subbox snapshots. This will increase to ~1.1 PB with the future release of TNG50. Data access and analysis examples are available in IDL, Python, and Matlab. We describe improvements and new functionality in the web-based API, including on-demand visualization and analysis of galaxies and halos, exploratory plotting of scaling relations and other relationships between galactic and halo properties, and a new JupyterLab interface. This provides an online, browser-based, near-native data analysis platform enabling user computation with local access to TNG data, alleviating the need to download large datasets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图解模拟:公开数据发布
我们展示了IllustrisTNG项目的TNG100和TNG300模拟的所有数据的完整公开发布。IllustrisTNG是一套大容量,宇宙学,重力磁流体动力学模拟,运行与移动网格代码Arepo。TNG包括一个全面的星系形成物理模型,每个TNG模拟自一致地解决了暗物质、宇宙气体、发光恒星和超大质量黑洞从早期到现在的耦合演化,\(z=0\)。每个旗舰运行- tng50, TNG100和tng300 -都附有光晕/亚光晕目录,合并树,低分辨率和暗物质对应,所有这些都有100个快照。我们讨论了使用TNG时的科学和数字注意事项。目前在线可直接访问的数据量为~ 750tb,包括1200个全卷快照和~ 80000个高时间分辨率子盒快照。这将在TNG50的未来版本中增加到~1.1 PB。数据访问和分析示例在IDL, Python和Matlab中可用。我们描述了基于web的API中的改进和新功能,包括按需可视化和星系和晕的分析,探索性绘制缩放关系和星系和晕属性之间的其他关系,以及新的JupyterLab界面。这提供了一个在线的、基于浏览器的、近乎原生的数据分析平台,使用户能够通过本地访问TNG数据进行计算,从而减轻了下载大型数据集的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.
期刊最新文献
Machine learning applied to simulations of collisions between rotating, differentiated planets Technologies for supporting high-order geodesic mesh frameworks for computational astrophysics and space sciences Cosmological N-body simulations: a challenge for scalable generative models A detection metric designed for O’Connell effect eclipsing binaries DESTINY: Database for the Effects of STellar encounters on dIsks and plaNetary sYstems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1