Hader Castaño, Misael Cortés Rodríguez, Jesús Gil, Gloria L. López, R. Ortega-Toro
{"title":"Fluidised bed agglomeration of strawberry powder mix obtained for spray drying","authors":"Hader Castaño, Misael Cortés Rodríguez, Jesús Gil, Gloria L. López, R. Ortega-Toro","doi":"10.3233/jbr-220036","DOIUrl":null,"url":null,"abstract":"BACKGROUND: The microencapsulation process using spray drying (SD) represents an effective alternative in protecting the active components present in strawberries. However, microcapsules of strawberry powder mixtures present problems of instantanisation and flowability; an aspect that can be solved by agglomeration of the particles. OBJECTIVE: The aim of this study was to evaluate the influence of the fluidised bed agglomeration process on the flow, instantaneity and antioxidant properties of strawberry powder obtained by SD. METHODS: The response surface methodology (RSM) was used with a centred composite central design (α=1), considering the factors: fluidisation air temperature (50-70°C), time (30-50 min) and atomisation air pressure of the binder agent (1-2 bar). RESULTS: An increase in particle size was observed in the agglomeration process; the agglomerated particles showed a decrease in wetting time, the agglomerates of strawberry powder mixtures presented excellent instantanisation and fluidity, solving the problems identified in the microcapsules obtained by SD. CONCLUSIONS: Although the moisture and aw levels were increased in the agglomeration process, the values are within the microbiological and physicochemical food safety range; moreover, there was no effect on the phenol content and antioxidant capacity. The experimental optimisation achieved desirability of 68.4%, the optimum conditions being 70°C, 30 min and 1 bar.","PeriodicalId":15194,"journal":{"name":"Journal of Berry Research","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Berry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3233/jbr-220036","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
BACKGROUND: The microencapsulation process using spray drying (SD) represents an effective alternative in protecting the active components present in strawberries. However, microcapsules of strawberry powder mixtures present problems of instantanisation and flowability; an aspect that can be solved by agglomeration of the particles. OBJECTIVE: The aim of this study was to evaluate the influence of the fluidised bed agglomeration process on the flow, instantaneity and antioxidant properties of strawberry powder obtained by SD. METHODS: The response surface methodology (RSM) was used with a centred composite central design (α=1), considering the factors: fluidisation air temperature (50-70°C), time (30-50 min) and atomisation air pressure of the binder agent (1-2 bar). RESULTS: An increase in particle size was observed in the agglomeration process; the agglomerated particles showed a decrease in wetting time, the agglomerates of strawberry powder mixtures presented excellent instantanisation and fluidity, solving the problems identified in the microcapsules obtained by SD. CONCLUSIONS: Although the moisture and aw levels were increased in the agglomeration process, the values are within the microbiological and physicochemical food safety range; moreover, there was no effect on the phenol content and antioxidant capacity. The experimental optimisation achieved desirability of 68.4%, the optimum conditions being 70°C, 30 min and 1 bar.
期刊介绍:
The main objective of the Journal of Berry Research is to improve the knowledge about quality and production of berries to benefit health of the consumers and maintain profitable production using sustainable systems. The objective will be achieved by focusing on four main areas of research and development:
From genetics to variety evaluation
Nursery production systems and plant quality control
Plant physiology, biochemistry and molecular biology, as well as cultural management
Health for the consumer: components and factors affecting berries'' nutritional value
Specifically, the journal will cover berries (strawberry, raspberry, blackberry, blueberry, cranberry currants, etc.), as well as grapes and small soft fruit in general (e.g., kiwi fruit). It will publish research results covering all areas of plant breeding, including plant genetics, genomics, functional genomics, proteomics and metabolomics, plant physiology, plant pathology and plant development, as well as results dealing with the chemistry and biochemistry of bioactive compounds contained in such fruits and their possible role in human health. Contributions detailing possible pharmacological, medical or therapeutic use or dietary significance will be welcomed in addition to studies regarding biosafety issues of genetically modified plants.