L. McGuire, Nathan W. Fuller, Catherine G Haase, Kirk A. Silas, S. Olson
{"title":"Lean Mass Dynamics in Hibernating Bats and Implications for Energy and Water Budgets","authors":"L. McGuire, Nathan W. Fuller, Catherine G Haase, Kirk A. Silas, S. Olson","doi":"10.1086/720160","DOIUrl":null,"url":null,"abstract":"Hibernation requires balancing energy and water demands over several months. Many studies have noted the importance of fat for hibernation energy budgets, but protein catabolism in hibernation has received less attention, and whole-animal changes in lean mass have not previously been considered. We used quantitative magnetic resonance body composition analysis to measure deposition of fat and lean mass of cave myotis (Myotis velifer) during the prehibernation period and decreases in fat and lean mass of Townsend’s big-eared bats (Corynorhinus townsendii) during hibernation. For cave myotis, lean mass represented 25% and 38% (female and male, respectively) of prehibernation mass gain. In hibernating Townsend’s big-eared bats, lean mass decrease was similar for females and males. We used values for Townsend’s big-eared bats to explore the functional implications of lean mass change for water and energy budgets. Lean mass accounted for a substantial proportion of mass change during hibernation (female: 18%, male: 35%), and although not accounting for a large proportion of the energy budget (female: 3%, male: 7%), lean mass catabolism represented an important contribution to water production (female: 14%, male: 29%). Although most mammals cannot rely on protein catabolism for metabolic water production because of the water cost of excreting urea, we propose a variation of the protein-for-water strategy whereby hibernators could temporally compartmentalize the benefits of protein catabolism to periods of torpor and the water cost to periodic arousals when free drinking water is typically available. Combined, our analyses demonstrate the importance of considering changes in lean mass during hibernation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/720160","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Hibernation requires balancing energy and water demands over several months. Many studies have noted the importance of fat for hibernation energy budgets, but protein catabolism in hibernation has received less attention, and whole-animal changes in lean mass have not previously been considered. We used quantitative magnetic resonance body composition analysis to measure deposition of fat and lean mass of cave myotis (Myotis velifer) during the prehibernation period and decreases in fat and lean mass of Townsend’s big-eared bats (Corynorhinus townsendii) during hibernation. For cave myotis, lean mass represented 25% and 38% (female and male, respectively) of prehibernation mass gain. In hibernating Townsend’s big-eared bats, lean mass decrease was similar for females and males. We used values for Townsend’s big-eared bats to explore the functional implications of lean mass change for water and energy budgets. Lean mass accounted for a substantial proportion of mass change during hibernation (female: 18%, male: 35%), and although not accounting for a large proportion of the energy budget (female: 3%, male: 7%), lean mass catabolism represented an important contribution to water production (female: 14%, male: 29%). Although most mammals cannot rely on protein catabolism for metabolic water production because of the water cost of excreting urea, we propose a variation of the protein-for-water strategy whereby hibernators could temporally compartmentalize the benefits of protein catabolism to periods of torpor and the water cost to periodic arousals when free drinking water is typically available. Combined, our analyses demonstrate the importance of considering changes in lean mass during hibernation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.