David Dutwin, Patrick Coyle, I. Bilgen, N. English
{"title":"Leveraging Predictive Modelling from Multiple Sources of Big Data to Improve Sample Efficiency and Reduce Survey Nonresponse Error","authors":"David Dutwin, Patrick Coyle, I. Bilgen, N. English","doi":"10.1093/jssam/smad016","DOIUrl":null,"url":null,"abstract":"\n Big data has been fruitfully leveraged as a supplement for survey data—and sometimes as its replacement—and in the best of worlds, as a “force multiplier” to improve survey analytics and insight. We detail a use case, the big data classifier (BDC), as a replacement to the more traditional methods of targeting households in survey sampling for given specific household and personal attributes. Much like geographic targeting and the use of commercial vendor flags, we detail the ability of BDCs to predict the likelihood that any given household is, for example, one that contains a child or someone who is Hispanic. We specifically build 15 BDCs with the combined data from a large nationally representative probability-based panel and a range of big data from public and private sources, and then assess the effectiveness of these BDCs to successfully predict their range of predicted attributes across three large survey datasets. For each BDC and each data application, we compare the relative effectiveness of the BDCs against historical sample targeting techniques of geographic clustering and vendor flags. Overall, BDCs offer a modest improvement in their ability to target subpopulations. We find classes of predictions that are consistently more effective, and others where the BDCs are on par with vendor flagging, though always superior to geographic clustering. We present some of the relative strengths and weaknesses of BDCs as a new method to identify and subsequently sample low incidence and other populations.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smad016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Big data has been fruitfully leveraged as a supplement for survey data—and sometimes as its replacement—and in the best of worlds, as a “force multiplier” to improve survey analytics and insight. We detail a use case, the big data classifier (BDC), as a replacement to the more traditional methods of targeting households in survey sampling for given specific household and personal attributes. Much like geographic targeting and the use of commercial vendor flags, we detail the ability of BDCs to predict the likelihood that any given household is, for example, one that contains a child or someone who is Hispanic. We specifically build 15 BDCs with the combined data from a large nationally representative probability-based panel and a range of big data from public and private sources, and then assess the effectiveness of these BDCs to successfully predict their range of predicted attributes across three large survey datasets. For each BDC and each data application, we compare the relative effectiveness of the BDCs against historical sample targeting techniques of geographic clustering and vendor flags. Overall, BDCs offer a modest improvement in their ability to target subpopulations. We find classes of predictions that are consistently more effective, and others where the BDCs are on par with vendor flagging, though always superior to geographic clustering. We present some of the relative strengths and weaknesses of BDCs as a new method to identify and subsequently sample low incidence and other populations.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.