Mathematically modelling the inactivation kinetics of Geobacillus stearothermophilus spores: Effects of sterilization environments and temperature profiles
Manuel Feurhuber , Ralf Neuschwander , Thomas Taupitz , Carsten Frank , Christoph Hochenauer , Valentin Schwarz
{"title":"Mathematically modelling the inactivation kinetics of Geobacillus stearothermophilus spores: Effects of sterilization environments and temperature profiles","authors":"Manuel Feurhuber , Ralf Neuschwander , Thomas Taupitz , Carsten Frank , Christoph Hochenauer , Valentin Schwarz","doi":"10.1016/j.phmed.2021.100046","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, inactivation kinetics of <em>Geobacillus stearothermophilus</em> spores were evaluated in different sterilization environments. The kinetics were analysed and mathematically modelled based on experimental data collected. The inactivation kinetics were measured precisely in moist heat environments using different sterilization temperatures and holding times. All measured inactivation times were shorter than the inactivation time indicated by the Biological Indicator (BI) manufacturer. Increasing sterilization efficiency was found in the following environments: air, saturated steam, wet steam, liquid water, dialysis solutions. Applying first- and second-order reaction kinetics approaches, formulas were derived from measured data that enabled bacterial inactivation to be modelled. A mathematical first-order reaction kinetic modelling approach could be taken to effectively predict inactivation kinetics for <em>G. stearothermophilus</em> spores based on the experimentally measured data collected in wet steam and air environments. A second-order reaction kinetics approach could be taken, however, to model measured data more accurately in liquid water and dialysis-solution environments. The mathematical models presented here can be applied to describe inactivation kinetics for <em>G. stearothermophilus</em> spores in different sterilization test environments or for any given sterilization temperature profile. These findings can be used to improve the quality of sterilization processes.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"13 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352451021000123/pdfft?md5=3e35a1cfdfcb4b275f928cd1b47a5f45&pid=1-s2.0-S2352451021000123-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451021000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
In this study, inactivation kinetics of Geobacillus stearothermophilus spores were evaluated in different sterilization environments. The kinetics were analysed and mathematically modelled based on experimental data collected. The inactivation kinetics were measured precisely in moist heat environments using different sterilization temperatures and holding times. All measured inactivation times were shorter than the inactivation time indicated by the Biological Indicator (BI) manufacturer. Increasing sterilization efficiency was found in the following environments: air, saturated steam, wet steam, liquid water, dialysis solutions. Applying first- and second-order reaction kinetics approaches, formulas were derived from measured data that enabled bacterial inactivation to be modelled. A mathematical first-order reaction kinetic modelling approach could be taken to effectively predict inactivation kinetics for G. stearothermophilus spores based on the experimentally measured data collected in wet steam and air environments. A second-order reaction kinetics approach could be taken, however, to model measured data more accurately in liquid water and dialysis-solution environments. The mathematical models presented here can be applied to describe inactivation kinetics for G. stearothermophilus spores in different sterilization test environments or for any given sterilization temperature profile. These findings can be used to improve the quality of sterilization processes.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.