FMPM: Futuristic Mobility Prediction Model for Mobile Adhoc Networks Using Auto-Regressive Integrated Moving Average

P. Theerthagiri, T. Menakadevi
{"title":"FMPM: Futuristic Mobility Prediction Model for Mobile Adhoc Networks Using Auto-Regressive Integrated Moving Average","authors":"P. Theerthagiri, T. Menakadevi","doi":"10.25027/AGJ2017.28.V29I2.136","DOIUrl":null,"url":null,"abstract":"The mobility of the node plays a crucial role in route discovery process for Mobile Ad hoc networks (MANET). Typically, the high-speed node affects the routing process in terms of packet relay, packet delivery. In this paper, we propose a mobility prediction model FMPM using Auto-Regressive Integrated Moving Average (ARIMA) method for estimating futuristic speed values of the nodes in MANET. The ARIMA is a time series forecasting approach using autocorrelations of the data. The ARIMA model applied to mobile nodes for predicting its future speeds in the network. This prediction supports the route discovery process for selection of moderate mobility nodes, which provides the reliable routing with the nodes. The nodes are trained by ARIMA model using neural network time-series tool of Matlab. Roughly, each node trained about 10 iterations. Simulation results show that the forecasted values almost match with the simulated node speed values. Performance analysis of the predicted mobility values exhibits the enhancement of current methodology compared to other works in terms of performance metrics such as mean square error, covariance, and computation overhead. FMPM yields more perfection in the speed prediction of a mobile node with a maximum of 80-100 % throughout the time series.","PeriodicalId":53261,"journal":{"name":"Acta Graphica","volume":"29 1","pages":"7-17"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.25027/AGJ2017.28.V29I2.136","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Graphica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25027/AGJ2017.28.V29I2.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The mobility of the node plays a crucial role in route discovery process for Mobile Ad hoc networks (MANET). Typically, the high-speed node affects the routing process in terms of packet relay, packet delivery. In this paper, we propose a mobility prediction model FMPM using Auto-Regressive Integrated Moving Average (ARIMA) method for estimating futuristic speed values of the nodes in MANET. The ARIMA is a time series forecasting approach using autocorrelations of the data. The ARIMA model applied to mobile nodes for predicting its future speeds in the network. This prediction supports the route discovery process for selection of moderate mobility nodes, which provides the reliable routing with the nodes. The nodes are trained by ARIMA model using neural network time-series tool of Matlab. Roughly, each node trained about 10 iterations. Simulation results show that the forecasted values almost match with the simulated node speed values. Performance analysis of the predicted mobility values exhibits the enhancement of current methodology compared to other works in terms of performance metrics such as mean square error, covariance, and computation overhead. FMPM yields more perfection in the speed prediction of a mobile node with a maximum of 80-100 % throughout the time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自回归综合移动平均的移动自组织网络未来移动性预测模型
节点的移动性在移动自组织网络(MANET)的路由发现过程中起着至关重要的作用。通常,高速节点在数据包中继、数据包传递方面影响路由过程。在本文中,我们使用自回归综合移动平均(ARIMA)方法提出了一个移动预测模型FMPM,用于估计MANET中节点的未来速度值。ARIMA是一种使用数据自相关的时间序列预测方法。ARIMA模型应用于移动节点,用于预测其在网络中的未来速度。该预测支持用于选择中等移动性节点的路由发现过程,这提供了与节点的可靠路由。利用Matlab的神经网络时间序列工具,利用ARIMA模型对节点进行训练。粗略地说,每个节点训练了大约10次迭代。仿真结果表明,预测值与模拟节点速度值基本一致。预测迁移率值的性能分析表明,与其他工作相比,在性能指标(如均方误差、协方差和计算开销)方面,当前方法得到了增强。FMPM在移动节点的速度预测中产生了更完美的结果,在整个时间序列中具有80-100%的最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Graphic Design in Search of Its Identity Socioeconomic status and risk factors for cardiovascular disease (CVD) among the residents of Jammu Division (J&K-India) - A Geo Medical Analysis Why do we digitize books instead of knowledge? PACKAGING THROUGH TIME The impact of technical parameters on the perception quality of three-dimensional content
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1