Static Stability Analysis of Mass Sensors Consisting of Hygro-Thermally Activated Graphene Sheets Using a Nonlocal Strain Gradient Theory

Q2 Engineering Engineering Transactions Pub Date : 2020-09-04 DOI:10.24423/ENGTRANS.1187.20200904
R. Selvamani, Madasamy Mahaveer Sreejayan, F. Ebrahimi
{"title":"Static Stability Analysis of Mass Sensors Consisting of Hygro-Thermally Activated Graphene Sheets Using a Nonlocal Strain Gradient Theory","authors":"R. Selvamani, Madasamy Mahaveer Sreejayan, F. Ebrahimi","doi":"10.24423/ENGTRANS.1187.20200904","DOIUrl":null,"url":null,"abstract":"This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory that does not need shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors, such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parameters, on buckling characteristics of graphene sheets are examined and presented as dispersion graphs.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1187.20200904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a nonlocal strain gradient plate model for buckling analysis of graphene sheets under hygro-thermal environments with mass sensors. For a more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. The graphene sheet is modeled via a two-variable shear deformation plate theory that does not need shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on the elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations for different boundary conditions. Effects of different factors, such as moisture concentration rise, temperature rise, nonlocal parameter, length scale parameter, nanoparticle mass and geometrical parameters, on buckling characteristics of graphene sheets are examined and presented as dispersion graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非局部应变梯度理论的湿热激活石墨烯片质量传感器静态稳定性分析
本文建立了一个非局部应变梯度板模型,用于带质量传感器的石墨烯片在湿热环境下的屈曲分析。为了更准确地分析石墨烯片,所提出的理论包含了与非局部和应变梯度效应相关的两个尺度参数。石墨烯片是通过不需要剪切校正因子的双变量剪切变形板理论建模的。利用汉密尔顿原理推导了弹性基底上非局部应变梯度石墨烯片的控制方程。采用Galerkin方法求解不同边界条件下的控制方程。考察了水分浓度升高、温度升高、非局部参数、长度尺度参数、纳米颗粒质量和几何参数等不同因素对石墨烯片屈曲特性的影响,并以色散图的形式给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
期刊最新文献
Investigation of non-stationary processes of an elastic half-space with a built-in elastic cylinder Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system Mixed-type variational principle for creep problems considering the aggressiveness of external fields Nonlinear feedback control of motion and power of moving sources during heating of the rod Academician Azat Mirzajanzade – 95
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1