Automatic Deception Detection using Multiple Speech and Language Communicative Descriptors in Dialogs

Huang-Cheng Chou, Yi-Wen Liu, Chi-Chun Lee
{"title":"Automatic Deception Detection using Multiple Speech and Language Communicative Descriptors in Dialogs","authors":"Huang-Cheng Chou, Yi-Wen Liu, Chi-Chun Lee","doi":"10.1017/ATSIP.2021.6","DOIUrl":null,"url":null,"abstract":"While deceptive behaviors are a natural part of human life, it is well known that human is generally bad at detecting deception. In this study, we present an automatic deception detection framework by comprehensively integrating prior domain knowledge in deceptive behavior understanding. Specifically, we compute acoustics, textual information, implicatures with non-verbal behaviors, and conversational temporal dynamics for improving automatic deception detection in dialogs. The proposed model reaches start-of-the-art performance on the Daily Deceptive Dialogues corpus of Mandarin (DDDM) database, 80.61% unweighted accuracy recall in deception recognition. In the further analyses, we reveal that (i) the deceivers’ deception behaviors can be observed from the interrogators’ behaviors in the conversational temporal dynamics features and (ii) some of the acoustic features (e.g. loudness and MFCC) and textual features are significant and effective indicators to detect deception behaviors.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/ATSIP.2021.6","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APSIPA Transactions on Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ATSIP.2021.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

Abstract

While deceptive behaviors are a natural part of human life, it is well known that human is generally bad at detecting deception. In this study, we present an automatic deception detection framework by comprehensively integrating prior domain knowledge in deceptive behavior understanding. Specifically, we compute acoustics, textual information, implicatures with non-verbal behaviors, and conversational temporal dynamics for improving automatic deception detection in dialogs. The proposed model reaches start-of-the-art performance on the Daily Deceptive Dialogues corpus of Mandarin (DDDM) database, 80.61% unweighted accuracy recall in deception recognition. In the further analyses, we reveal that (i) the deceivers’ deception behaviors can be observed from the interrogators’ behaviors in the conversational temporal dynamics features and (ii) some of the acoustic features (e.g. loudness and MFCC) and textual features are significant and effective indicators to detect deception behaviors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对话中使用多个语音和语言交际描述符的自动欺骗检测
虽然欺骗行为是人类生活中很自然的一部分,但众所周知,人类通常不善于识破欺骗。在这项研究中,我们提出了一个自动欺骗检测框架,该框架综合了欺骗行为理解中的先验领域知识。具体来说,我们计算了声学、文本信息、非语言行为的含义和会话时间动态,以提高对话中的自动欺骗检测。该模型在普通话每日欺骗对话语料库(DDDM)数据库上达到了最先进的性能,在欺骗识别上的非加权查全率为80.61%。在进一步的分析中,我们发现:(1)从对话时间动态特征中可以观察到欺骗者的欺骗行为;(2)一些声学特征(如响度和MFCC)和文本特征是检测欺骗行为的重要而有效的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APSIPA Transactions on Signal and Information Processing
APSIPA Transactions on Signal and Information Processing ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
8.60
自引率
6.20%
发文量
30
审稿时长
40 weeks
期刊最新文献
A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology Speech-and-Text Transformer: Exploiting Unpaired Text for End-to-End Speech Recognition GP-Net: A Lightweight Generative Convolutional Neural Network with Grasp Priority Reversible Data Hiding in Compressible Encrypted Images with Capacity Enhancement Convolutional Neural Networks Inference Memory Optimization with Receptive Field-Based Input Tiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1