{"title":"Hashtag Analysis of Indonesian COVID-19 Tweets Using Social Network Analysis","authors":"Muhammad Habibi, A. Priadana, M. Ma’arif","doi":"10.22146/IJCCS.61626","DOIUrl":null,"url":null,"abstract":"Social media has become more critical for people to communicate about the pandemic of COVID-19. In social media, hashtags are social annotations which often used to denote message content. It serves as an intuitive and flexible tool for making huge collections of posts searchable on Twitter. Through practices of hashtagging, user representations of a given post also become connected. This study aimed to analyze the hashtag of Indonesian COVID-19 Tweets using Social Network Analysis (SNA). We used SNA techniques to visualize network models and measure some centrality to find the most influential hashtag in the network. We collected and analyzed 500.000 public tweets from Twitter based on COVID-19 keywords. Based on the centrality measurement result, the hashtag #corona is a hashtag with the most connection with other hashtags. The hashtag #COVID19 is the hashtag that is most closely related to all other hashtags. The hashtag #corona is the hashtag that most acts as a bridge that can control the flow of information related to COVID-19. The hashtag #coronavirus is the most important of hashtags based on their link. Our study also found that the hashtag #covid19 and #wabah have a substantial relationship with religious-related hashtags based on network visualization.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.61626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Social media has become more critical for people to communicate about the pandemic of COVID-19. In social media, hashtags are social annotations which often used to denote message content. It serves as an intuitive and flexible tool for making huge collections of posts searchable on Twitter. Through practices of hashtagging, user representations of a given post also become connected. This study aimed to analyze the hashtag of Indonesian COVID-19 Tweets using Social Network Analysis (SNA). We used SNA techniques to visualize network models and measure some centrality to find the most influential hashtag in the network. We collected and analyzed 500.000 public tweets from Twitter based on COVID-19 keywords. Based on the centrality measurement result, the hashtag #corona is a hashtag with the most connection with other hashtags. The hashtag #COVID19 is the hashtag that is most closely related to all other hashtags. The hashtag #corona is the hashtag that most acts as a bridge that can control the flow of information related to COVID-19. The hashtag #coronavirus is the most important of hashtags based on their link. Our study also found that the hashtag #covid19 and #wabah have a substantial relationship with religious-related hashtags based on network visualization.