{"title":"Maintenance strategies and energy efficiency: a review","authors":"N. Firdaus, H. Ab-Samat, B. T. Prasetyo","doi":"10.1108/jqme-06-2021-0046","DOIUrl":null,"url":null,"abstract":"PurposeThis paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.Design/methodology/approachA literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.FindingsEach maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.Practical implicationsThe literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.Originality/valueThe novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-06-2021-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeThis paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.Design/methodology/approachA literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.FindingsEach maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.Practical implicationsThe literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.Originality/valueThe novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance