Coactivator-associated arginine methyltransferase 1 controls oligodendrocyte differentiation in the corpus callosum during early brain development

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2022-02-26 DOI:10.1002/dneu.22871
Yugo Ishino, Shoko Shimizu, Masaya Tohyama, Shingo Miyata
{"title":"Coactivator-associated arginine methyltransferase 1 controls oligodendrocyte differentiation in the corpus callosum during early brain development","authors":"Yugo Ishino,&nbsp;Shoko Shimizu,&nbsp;Masaya Tohyama,&nbsp;Shingo Miyata","doi":"10.1002/dneu.22871","DOIUrl":null,"url":null,"abstract":"<p>Protein arginine methylation has been recognized as one of key posttranslational modifications for refined protein functions, mediated by protein arginine methyltransferases (Prmts). Coactivator-associated arginine methyltransferase (Carm1, also known as Prmt4) participates in various cellular events, such as cell survival, proliferation, and differentiation through its protein arginine methylation activities. Carm1 regulates cell proliferation of a neuronal cell line and is reportedly expressed in the mammalian brain. However, its detailed function in the central nervous system, particularly in glial cells, remains largely unexplored. In this study, Carm1 exhibited relatively high expression in oligodendrocyte (OL) lineage cells present in the corpus callosum of the developing brain, followed by a remarkable downregulation after active myelination. The suppression of Carm1 activity by inhibitors in isolated oligodendrocyte precursor cells (OPCs) reduced the number of Ki67-expressing and BrdU-incorporated proliferating cells. Furthermore, Carm1 inactivation attenuated OL differentiation, as determined by the expression of Plp, a reliable myelin-related marker. It also impaired the extension of OL processes, accompanied by a significant reduction in gene expression related to OL differentiation and myelination, such as <i>Sox10</i>, <i>Cnp</i>, <i>Myrf</i>, and <i>Mbp</i>. In addition, OLs co-cultured with embryonic dorsal root ganglia neurons demonstrated that Carm1 activity is required for the appropriate formation of myelin processes and myelin sheaths around neuronal axons, and the induction of the clustering of Caspr, a node of Ranvier structural molecule. Thus, we propose that Carm1 is an essential molecule for the development of OPCs and OLs during brain development.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22871","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Protein arginine methylation has been recognized as one of key posttranslational modifications for refined protein functions, mediated by protein arginine methyltransferases (Prmts). Coactivator-associated arginine methyltransferase (Carm1, also known as Prmt4) participates in various cellular events, such as cell survival, proliferation, and differentiation through its protein arginine methylation activities. Carm1 regulates cell proliferation of a neuronal cell line and is reportedly expressed in the mammalian brain. However, its detailed function in the central nervous system, particularly in glial cells, remains largely unexplored. In this study, Carm1 exhibited relatively high expression in oligodendrocyte (OL) lineage cells present in the corpus callosum of the developing brain, followed by a remarkable downregulation after active myelination. The suppression of Carm1 activity by inhibitors in isolated oligodendrocyte precursor cells (OPCs) reduced the number of Ki67-expressing and BrdU-incorporated proliferating cells. Furthermore, Carm1 inactivation attenuated OL differentiation, as determined by the expression of Plp, a reliable myelin-related marker. It also impaired the extension of OL processes, accompanied by a significant reduction in gene expression related to OL differentiation and myelination, such as Sox10, Cnp, Myrf, and Mbp. In addition, OLs co-cultured with embryonic dorsal root ganglia neurons demonstrated that Carm1 activity is required for the appropriate formation of myelin processes and myelin sheaths around neuronal axons, and the induction of the clustering of Caspr, a node of Ranvier structural molecule. Thus, we propose that Carm1 is an essential molecule for the development of OPCs and OLs during brain development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同激活子相关精氨酸甲基转移酶1控制早期大脑发育过程中胼胝体少突胶质细胞的分化
蛋白精氨酸甲基化被认为是蛋白精氨酸甲基转移酶(Prmts)介导的精化蛋白功能的关键翻译后修饰之一。Coactivator-associated arginine methyltransferase (Carm1,又称Prmt4)通过其蛋白精氨酸甲基化活性参与多种细胞事件,如细胞存活、增殖和分化。Carm1调节神经细胞系的细胞增殖,据报道在哺乳动物大脑中表达。然而,它在中枢神经系统,特别是在胶质细胞中的详细功能,在很大程度上仍未被探索。在这项研究中,Carm1在发育中的大脑胼胝体中的少突胶质细胞(OL)谱系细胞中表现出相对较高的表达,随后在髓鞘形成活跃后显着下调。在分离的少突胶质前体细胞(OPCs)中,抑制剂对Carm1活性的抑制减少了表达ki67和brdu结合的增殖细胞的数量。此外,通过可靠的髓磷脂相关标志物Plp的表达确定,Carm1失活减弱了OL的分化。它还损害了OL过程的延伸,伴随着与OL分化和髓鞘形成相关的基因表达的显著减少,如Sox10、Cnp、Myrf和Mbp。此外,OLs与胚胎背根神经节神经元共培养表明,Carm1活性对于神经元轴突周围髓磷脂突和髓鞘的适当形成以及Ranvier结构分子节点Caspr的聚集是必需的。因此,我们认为Carm1是大脑发育过程中OPCs和OLs发育的重要分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Issue Information Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome Dysregulation of parvalbumin expression and neurotransmitter imbalance in the auditory cortex of the BTBR mouse model of autism spectrum disorder Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1 Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1