{"title":"Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures","authors":"Daxin Li, D. Jia, Zhihua Yang, Yu Zhou","doi":"10.1080/09506608.2021.1941716","DOIUrl":null,"url":null,"abstract":"ABSTRACT The multifunctional metastable SiBOCN system ceramics (including SiBN, SiCN, SiON, SiBC, SiBCN, SiBON, SiBOCN, etc.) are a new type of advanced structure–function integrated materials with unique structure and adjustable dielectric properties for high-temperature applications in thermal protection, communications, precise guidance, and microwave-absorption stealthy. These metastable materials generally require the rational co-design of multiscale structure and chemical composition to achieve desirable dielectric properties which induce interaction with incident electromagnetic wave. Herein, this review presents the latest development of metastable SiBOCN system ceramics, with the intent of summarising key findings, uncovering major trends and providing guidance for future efforts. Major themes in this assessment focus on the main processing routes, basic mechanisms for microwave transmission and absorption, scientific basis for material selection in specific background, principles for multiscale structure design and chemistry optimisation, tunable microwave transparent or absorbing properties, and future challenges and prospects in this active research filed.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"67 1","pages":"266 - 297"},"PeriodicalIF":16.8000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2021.1941716","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2021.1941716","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 44
Abstract
ABSTRACT The multifunctional metastable SiBOCN system ceramics (including SiBN, SiCN, SiON, SiBC, SiBCN, SiBON, SiBOCN, etc.) are a new type of advanced structure–function integrated materials with unique structure and adjustable dielectric properties for high-temperature applications in thermal protection, communications, precise guidance, and microwave-absorption stealthy. These metastable materials generally require the rational co-design of multiscale structure and chemical composition to achieve desirable dielectric properties which induce interaction with incident electromagnetic wave. Herein, this review presents the latest development of metastable SiBOCN system ceramics, with the intent of summarising key findings, uncovering major trends and providing guidance for future efforts. Major themes in this assessment focus on the main processing routes, basic mechanisms for microwave transmission and absorption, scientific basis for material selection in specific background, principles for multiscale structure design and chemistry optimisation, tunable microwave transparent or absorbing properties, and future challenges and prospects in this active research filed.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.