Intrinsic Dimension Adaptive Partitioning for Kernel Methods

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2021-07-16 DOI:10.1137/21m1435690
Thomas Hamm, Ingo Steinwart
{"title":"Intrinsic Dimension Adaptive Partitioning for Kernel Methods","authors":"Thomas Hamm, Ingo Steinwart","doi":"10.1137/21m1435690","DOIUrl":null,"url":null,"abstract":"We prove minimax optimal learning rates for kernel ridge regression, resp. support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1435690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We prove minimax optimal learning rates for kernel ridge regression, resp. support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核方法的内维数自适应划分
我们证明了核岭回归的极小极大最优学习率。支持向量机基于一个数据依赖的输入空间分区,其中输入空间的依赖维数被支持数据生成分布的分形维数所取代。我们进一步表明,这些最优率可以通过训练验证程序来实现,而不需要对数据的内在维度有任何先验知识。最后,我们进行了大量的实验,证明我们所考虑的学习方法实际上能够从嵌入在更高维度空间中的非平凡数据集中进行泛化,就像从原始数据集中一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1