{"title":"From microfluidics to microphysiological systems: Past, present, and future","authors":"María Virumbrales-Muñoz , Jose M. Ayuso","doi":"10.1016/j.ooc.2022.100015","DOIUrl":null,"url":null,"abstract":"<div><p>For over a decade, we have seen significant strides in the microfluidics field that have led to the concept of microphysiological systems. These systems emerged in the early 2010s as versatile <em>in vitro</em> platforms that allowed researchers to mimic tissue complexity <em>in vitro</em>. Early models focused on showing the advantages of fluid physics at the microscale and demonstrating proof-of-concept experiments. As the technology evolved, microfluidic models became more complex and showed their capacity to mimic complex biological responses at an organ level, coining the concept of organ-on-a-chip platforms. Gathered under the banner of “microphysiological systems”, current platforms evaluate complex dynamics that involve numerous cell types in highly organized scenarios. Recent models have leveraged advanced imaging and multi-omics techniques to study a large variety of cellular and molecular processes, from cancer and strokes to reproductive biology and infectious diseases. In this piece, we highlight the main hallmarks of each of these periods and outline current and upcoming trends in the field of microphysiological systems.</p></div>","PeriodicalId":74371,"journal":{"name":"Organs-on-a-chip","volume":"4 ","pages":"Article 100015"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666102022000015/pdfft?md5=f7597c68eebff226425ab7586777a079&pid=1-s2.0-S2666102022000015-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organs-on-a-chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666102022000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
For over a decade, we have seen significant strides in the microfluidics field that have led to the concept of microphysiological systems. These systems emerged in the early 2010s as versatile in vitro platforms that allowed researchers to mimic tissue complexity in vitro. Early models focused on showing the advantages of fluid physics at the microscale and demonstrating proof-of-concept experiments. As the technology evolved, microfluidic models became more complex and showed their capacity to mimic complex biological responses at an organ level, coining the concept of organ-on-a-chip platforms. Gathered under the banner of “microphysiological systems”, current platforms evaluate complex dynamics that involve numerous cell types in highly organized scenarios. Recent models have leveraged advanced imaging and multi-omics techniques to study a large variety of cellular and molecular processes, from cancer and strokes to reproductive biology and infectious diseases. In this piece, we highlight the main hallmarks of each of these periods and outline current and upcoming trends in the field of microphysiological systems.