A Novel Flexible Lane Changing (FLC) Method in Complicated Dynamic Environment for Automated Vehicles

Q4 Chemical Engineering Applied and Computational Mechanics Pub Date : 2021-04-25 DOI:10.22055/JACM.2021.36276.2818
M. Rafat, S. Azadi
{"title":"A Novel Flexible Lane Changing (FLC) Method in Complicated Dynamic Environment for Automated Vehicles","authors":"M. Rafat, S. Azadi","doi":"10.22055/JACM.2021.36276.2818","DOIUrl":null,"url":null,"abstract":"Decision making and path planning in case of highly transient dynamics of the surrounding as well as the effect of road condition are the issues that are not completely solved in the previous researches. The goal is to perform a safe and comfortable lane change that includes flexible re-planning capabilities. In this paper, a novel structure for path planning and decision making part of a vehicle automatic lane change has been introduced which comprehensively considers both longitudinal and lateral dynamics of the vehicle. The presented method is able to perform re-planning even in the middle of a lane change maneuver according to new traffic condition. Inclusion of the dynamics of all involved vehicles and providing online performance are the other advantages of the proposed system. The algorithm is simulated and various scenarios are constructed to evaluate the efficiency of the system. The results show that the system has completely acceptable performance.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.36276.2818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Decision making and path planning in case of highly transient dynamics of the surrounding as well as the effect of road condition are the issues that are not completely solved in the previous researches. The goal is to perform a safe and comfortable lane change that includes flexible re-planning capabilities. In this paper, a novel structure for path planning and decision making part of a vehicle automatic lane change has been introduced which comprehensively considers both longitudinal and lateral dynamics of the vehicle. The presented method is able to perform re-planning even in the middle of a lane change maneuver according to new traffic condition. Inclusion of the dynamics of all involved vehicles and providing online performance are the other advantages of the proposed system. The algorithm is simulated and various scenarios are constructed to evaluate the efficiency of the system. The results show that the system has completely acceptable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种复杂动态环境下自动驾驶车辆柔性变道方法
在高度瞬态动态环境下的决策和路径规划以及道路状况的影响是以往研究中没有完全解决的问题。目标是实现安全舒适的变道,包括灵活的重新规划功能。本文提出了一种综合考虑车辆纵向动力学和横向动力学的车辆自动变道路径规划和决策结构。该方法能够根据新的交通状况在变道机动中进行重新规划。包括所有相关车辆的动态和提供在线性能是该系统的另一个优点。对该算法进行了仿真,并构建了各种场景来评估系统的效率。结果表明,该系统具有完全可接受的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
期刊最新文献
Compressor cascade correlations modelling at design points using artificial neural networks Mesh convergence error estimations for compressible inviscid fluid flow over airfoil cascades using multiblock structured mesh Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability Numerical simulations of aeroelastic instabilities in a turbine-blade cascade by a modified Van der Pol model at running excitation Higher order computational model considering the effects of transverse normal strain and 2-parameter elastic foundation for the bending of laminated panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1