{"title":"Detection of epileptic seizures in EEG by using machine learning techniques","authors":"Muayed S. Al-Huseiny, Ahmed S. Sajit","doi":"10.29354/diag/158277","DOIUrl":null,"url":null,"abstract":"In this research a public dataset of recordings of EEG signals of healthy subjects and epileptic patients was used to build three simple classifiers with low time complexity, these are decision tree, random forest and AdaBoost algorithm. The data was initially preprocessed to extract short waves of electrical signals representing brain activity. The signals are then used for the selected models. Experimental results showed that random forest achieved the best accuracy of detection of the presence/absence of epileptic seizure in the EEG signals at 97.23% followed by decision tree with accuracy of 96.93%. The least performing algorithm was the AdaBoost scoring accuracy of 87.23%. Further, the AUC scores were 99% for decision tree, 99.9% for random forest and 95.6% for AdaBoost. These results are comparable to state-of-the-art classifiers which have higher time complexity.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/158277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this research a public dataset of recordings of EEG signals of healthy subjects and epileptic patients was used to build three simple classifiers with low time complexity, these are decision tree, random forest and AdaBoost algorithm. The data was initially preprocessed to extract short waves of electrical signals representing brain activity. The signals are then used for the selected models. Experimental results showed that random forest achieved the best accuracy of detection of the presence/absence of epileptic seizure in the EEG signals at 97.23% followed by decision tree with accuracy of 96.93%. The least performing algorithm was the AdaBoost scoring accuracy of 87.23%. Further, the AUC scores were 99% for decision tree, 99.9% for random forest and 95.6% for AdaBoost. These results are comparable to state-of-the-art classifiers which have higher time complexity.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.