Weiqing Sun, Shengxin Wang, Shen Wei, Pengfei Cao, Yan Zhao, Lechao Xi, Xinlu Liu, Lihua Wang
{"title":"An improved PBFT consensus mechanism with trust value evaluation application in the agricultural product trusted traceability system","authors":"Weiqing Sun, Shengxin Wang, Shen Wei, Pengfei Cao, Yan Zhao, Lechao Xi, Xinlu Liu, Lihua Wang","doi":"10.3233/jhs-222077","DOIUrl":null,"url":null,"abstract":"Blockchain has the advantages of tamper proof, high reliability and traceability, so it can better support the agricultural product traceability system. However, the agricultural product supply chain has the characteristics of long chain and decentralized production, which makes the application of the combination of blockchain technology and agricultural product traceability have many nodes, large system overhead and other problems. In order to solve the above problems, this paper proposes a Practical Byzantine Fault Tolerance (PBFT) consensus mechanism based on trust value evaluation, and uses this optimization algorithm to propose an architecture model to meet the demand for trusted traceability of agricultural product supply chain, so as to realize the distributed storage and security protection of supply chain data. In order to ensure the effective operation of the blockchain system, this paper studies the consensus mechanism in the blockchain network, designs a trust value evaluation model to calculate the trust value of nodes, and selects trusted nodes to join the consensus group based on the trust value, which ensures the credibility of the consensus nodes. At the same time, the consistency protocol is optimized to reduce the communication overhead in the consensus process. The experimental results show that the consensus mechanism improved in this paper has certain advantages in communication overhead, transaction delay and throughput. Compared with the existing storage model, the model described in this paper has higher security and throughput efficiency, effectively ensures the reliable traceability of data, and can be better applied to the traceability scenario of agricultural product supply chain.","PeriodicalId":54809,"journal":{"name":"Journal of High Speed Networks","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Speed Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jhs-222077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Blockchain has the advantages of tamper proof, high reliability and traceability, so it can better support the agricultural product traceability system. However, the agricultural product supply chain has the characteristics of long chain and decentralized production, which makes the application of the combination of blockchain technology and agricultural product traceability have many nodes, large system overhead and other problems. In order to solve the above problems, this paper proposes a Practical Byzantine Fault Tolerance (PBFT) consensus mechanism based on trust value evaluation, and uses this optimization algorithm to propose an architecture model to meet the demand for trusted traceability of agricultural product supply chain, so as to realize the distributed storage and security protection of supply chain data. In order to ensure the effective operation of the blockchain system, this paper studies the consensus mechanism in the blockchain network, designs a trust value evaluation model to calculate the trust value of nodes, and selects trusted nodes to join the consensus group based on the trust value, which ensures the credibility of the consensus nodes. At the same time, the consistency protocol is optimized to reduce the communication overhead in the consensus process. The experimental results show that the consensus mechanism improved in this paper has certain advantages in communication overhead, transaction delay and throughput. Compared with the existing storage model, the model described in this paper has higher security and throughput efficiency, effectively ensures the reliable traceability of data, and can be better applied to the traceability scenario of agricultural product supply chain.
期刊介绍:
The Journal of High Speed Networks is an international archival journal, active since 1992, providing a publication vehicle for covering a large number of topics of interest in the high performance networking and communication area. Its audience includes researchers, managers as well as network designers and operators. The main goal will be to provide timely dissemination of information and scientific knowledge.
The journal will publish contributed papers on novel research, survey and position papers on topics of current interest, technical notes, and short communications to report progress on long-term projects. Submissions to the Journal will be refereed consistently with the review process of leading technical journals, based on originality, significance, quality, and clarity.
The journal will publish papers on a number of topics ranging from design to practical experiences with operational high performance/speed networks.