{"title":"Climatic Drivers of Ponderosa Pine Growth in Central Idaho","authors":"J. Pettit, R. DeRose, J. Long","doi":"10.3959/1536-1098-74.2.172","DOIUrl":null,"url":null,"abstract":"Abstract Despite the widespread use of ponderosa pine as an important hydroclimate proxy, we actually understand very little about its climate response in the Northern Rockies. Here, we analyze two new ponderosa pine chronologies to investigate how climate influences annual growth. Despite differences in precipitation amount and timing and large elevation differences (1820 m versus 1060 m), ring width at both sites was strongly driven by water availability. The mid-elevation, water-limited site responded well to previous fall precipitation whereas the wetter, high-elevation site responded to growing season precipitation and temperature. When precipitation and temperature were simultaneously accounted for using the standardized precipitation evapotranspiration index, ring-width response between sites converged and appeared nearly identical. Water stress drove the timing of ponderosa pine growth by a combination of factors such as strong water dependence, and determinate growth physiology, as indicated by lag-1 autocorrelation. When analyzing response to single-month climate variables, precipitation from growing-season months dominates. When we examined seasonal variables, climate from the previous year became more important. Temporal fidelity of the climatic response at both sites maintained significance across the historical record, although the relationship weakened at the low-elevation site. The collection of new tree-ring data sets such as these for central Idaho improves our understanding of ponderosa pine growth response to climate.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"74 1","pages":"172 - 184"},"PeriodicalIF":1.1000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3959/1536-1098-74.2.172","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-74.2.172","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract Despite the widespread use of ponderosa pine as an important hydroclimate proxy, we actually understand very little about its climate response in the Northern Rockies. Here, we analyze two new ponderosa pine chronologies to investigate how climate influences annual growth. Despite differences in precipitation amount and timing and large elevation differences (1820 m versus 1060 m), ring width at both sites was strongly driven by water availability. The mid-elevation, water-limited site responded well to previous fall precipitation whereas the wetter, high-elevation site responded to growing season precipitation and temperature. When precipitation and temperature were simultaneously accounted for using the standardized precipitation evapotranspiration index, ring-width response between sites converged and appeared nearly identical. Water stress drove the timing of ponderosa pine growth by a combination of factors such as strong water dependence, and determinate growth physiology, as indicated by lag-1 autocorrelation. When analyzing response to single-month climate variables, precipitation from growing-season months dominates. When we examined seasonal variables, climate from the previous year became more important. Temporal fidelity of the climatic response at both sites maintained significance across the historical record, although the relationship weakened at the low-elevation site. The collection of new tree-ring data sets such as these for central Idaho improves our understanding of ponderosa pine growth response to climate.
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.