{"title":"Future of machine learning in geotechnics","authors":"K. Phoon, Wenpeng Zhang","doi":"10.1080/17499518.2022.2087884","DOIUrl":null,"url":null,"abstract":"ABSTRACT Machine learning (ML) is widely used in many industries, resulting in recent interests to explore ML in geotechnical engineering. Past review papers focus mainly on ML algorithms while this paper advocates an agenda to put data at the core, to develop novel algorithms that are effective for geotechnical data (existing and new), to address the needs of current practice, to exploit new opportunities from emerging technologies or to meet new needs from digital transformation, and to take advantage of current knowledge and accumulated experience. This agenda is called data-centric geotechnics and it contains three core elements: data centricity, fit for (and transform) practice, and geotechnical context. The future of machine learning in geotechnics should be envisioned with this “data first practice central” agenda in mind. Data-driven site characterization (DDSC) is an active research topic in this agenda because an understanding of the ground is crucial in all projects. Examples of DDSC challenges are ugly data and explainable site recognition. Additional challenges include making ML indispensable (ML supremacy), learning how to learn (meta-learning), and becoming smart (digital twin).","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"7 - 22"},"PeriodicalIF":6.5000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2022.2087884","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 59
Abstract
ABSTRACT Machine learning (ML) is widely used in many industries, resulting in recent interests to explore ML in geotechnical engineering. Past review papers focus mainly on ML algorithms while this paper advocates an agenda to put data at the core, to develop novel algorithms that are effective for geotechnical data (existing and new), to address the needs of current practice, to exploit new opportunities from emerging technologies or to meet new needs from digital transformation, and to take advantage of current knowledge and accumulated experience. This agenda is called data-centric geotechnics and it contains three core elements: data centricity, fit for (and transform) practice, and geotechnical context. The future of machine learning in geotechnics should be envisioned with this “data first practice central” agenda in mind. Data-driven site characterization (DDSC) is an active research topic in this agenda because an understanding of the ground is crucial in all projects. Examples of DDSC challenges are ugly data and explainable site recognition. Additional challenges include making ML indispensable (ML supremacy), learning how to learn (meta-learning), and becoming smart (digital twin).
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.