3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2023-04-08 DOI:10.1155/2023/3901448
Simon Enbergs, J. Spinnen, T. Dehne, M. Sittinger
{"title":"3D Printing of Bone Substitutes Based on Vat Photopolymerization Processes: A Systematic Review","authors":"Simon Enbergs, J. Spinnen, T. Dehne, M. Sittinger","doi":"10.1155/2023/3901448","DOIUrl":null,"url":null,"abstract":"Treatment options for critically sized bone defects are currently limited to metal osteosynthesis, autologous bone grafting, or calcium-based implants to bridge the gap. Additive manufacturing techniques pose a possible alternative. The light-basedthree-dimensional printing process of vat photopolymerization (VP) is of particular interest since it enables the printing of complex scaffold architectures at high resolution. This review compares multiple vat photopolymerization processes as well as the employed resin components’ interactions with musculoskeletal cells and tissue. The results show an outstanding printing capability, exceeding the potential of other printing methods. However, despite the availability of various biocompatible materials, neither the mechanical strength of bone nor the scale necessary for clinical application has been achieved so far when relying on single material constructs. One possible solution is the development of adaptive hybrid constructs produced with multimaterial VP.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/3901448","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Treatment options for critically sized bone defects are currently limited to metal osteosynthesis, autologous bone grafting, or calcium-based implants to bridge the gap. Additive manufacturing techniques pose a possible alternative. The light-basedthree-dimensional printing process of vat photopolymerization (VP) is of particular interest since it enables the printing of complex scaffold architectures at high resolution. This review compares multiple vat photopolymerization processes as well as the employed resin components’ interactions with musculoskeletal cells and tissue. The results show an outstanding printing capability, exceeding the potential of other printing methods. However, despite the availability of various biocompatible materials, neither the mechanical strength of bone nor the scale necessary for clinical application has been achieved so far when relying on single material constructs. One possible solution is the development of adaptive hybrid constructs produced with multimaterial VP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于还原光聚合工艺的3D打印骨替代物:系统综述
目前,严重骨缺损的治疗选择仅限于金属骨合成、自体骨移植或钙基植入物来填补缺口。增材制造技术是一种可能的替代方案。基于光的还原光聚合(VP)三维打印过程特别令人感兴趣,因为它能够以高分辨率打印复杂的支架结构。这篇综述比较了多种vat光聚合过程以及所用树脂组分与肌肉骨骼细胞和组织的相互作用。结果显示出卓越的打印能力,超过了其他打印方法的潜力。然而,尽管存在各种生物相容性材料,但当依赖于单一材料结构时,到目前为止,既没有达到骨的机械强度,也没有达到临床应用所需的规模。一种可能的解决方案是开发用多材料VP生产的自适应混合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1