T. S. Chu, V. Damirez, Luzviminda Juanitez Ramos, Hedrick Justalero Sipacio, L. A. Venancio, A. Chua
{"title":"Increasing Material Efficiency of Additive Manufacturing through Lattice Infill Pattern","authors":"T. S. Chu, V. Damirez, Luzviminda Juanitez Ramos, Hedrick Justalero Sipacio, L. A. Venancio, A. Chua","doi":"10.5875/AUSMT.V10I1.2140","DOIUrl":null,"url":null,"abstract":"Fused Deposition Modelling (FDM) is one of the widely utilized technology of low-cost 3D Printing. It uses plastic filament as material for Additive Manufacturing. To lessen the amount of filament consumption of prints, modification of the infill patterns was conducted. This study focuses on the introduction of new infill pattern – the lattice infill to increase material efficiency of 3D prints, compared to conventional infill patterns. Benchmark designs such as grid and cubic infill pattern were first created by the 3D printer slicing software. The proposed lattice infill design was created using a CAD software and rendered as STL file for compatibility with the slicing software. The three infill patterns were simulated in the slicing software to measure approximate product weight and the proposed design is simulated in an engineering simulation software to determine the stress performance and displacement when an external force is introduced. Results showed that the new infill pattern saves material up to 61.3% compared to conventional infill patterns. In effect, it increased the amount of prints produced per spool by 2.5 times. It is also found out that the lattice infill pattern print can resist to up to 1.6kN of compressive load prior to breaking.","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/AUSMT.V10I1.2140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Fused Deposition Modelling (FDM) is one of the widely utilized technology of low-cost 3D Printing. It uses plastic filament as material for Additive Manufacturing. To lessen the amount of filament consumption of prints, modification of the infill patterns was conducted. This study focuses on the introduction of new infill pattern – the lattice infill to increase material efficiency of 3D prints, compared to conventional infill patterns. Benchmark designs such as grid and cubic infill pattern were first created by the 3D printer slicing software. The proposed lattice infill design was created using a CAD software and rendered as STL file for compatibility with the slicing software. The three infill patterns were simulated in the slicing software to measure approximate product weight and the proposed design is simulated in an engineering simulation software to determine the stress performance and displacement when an external force is introduced. Results showed that the new infill pattern saves material up to 61.3% compared to conventional infill patterns. In effect, it increased the amount of prints produced per spool by 2.5 times. It is also found out that the lattice infill pattern print can resist to up to 1.6kN of compressive load prior to breaking.
期刊介绍:
International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.