An improved equivalent beam model of large periodic beam-like space truss structures

IF 5.3 1区 工程技术 Q1 ENGINEERING, AEROSPACE Chinese Journal of Aeronautics Pub Date : 2023-12-01 DOI:10.1016/j.cja.2023.06.034
Dongfang ZHU , Xiaoxuan YAN , Jun SUN , Fucheng LIU , Dongxing CAO
{"title":"An improved equivalent beam model of large periodic beam-like space truss structures","authors":"Dongfang ZHU ,&nbsp;Xiaoxuan YAN ,&nbsp;Jun SUN ,&nbsp;Fucheng LIU ,&nbsp;Dongxing CAO","doi":"10.1016/j.cja.2023.06.034","DOIUrl":null,"url":null,"abstract":"<div><p>Space truss structures are essential components for space-based remote sensing loads with high spatial and temporal resolutions. To achieve high-precision vibration control, an accurate and efficient dynamics model is essential. In addition to the current equivalent beam model (EBM) based on the classical continuum theory, an improved equivalent beam model (IEBM) is proposed that considers the impact of the distinction between trusses and beams on torsional and shear deformations, as well as the impact of shear deformation on flexural rigidity. According to the displacement expressions of spatial beams, torsional, shear, and bending correction coefficients are introduced to derive expressions of strain energy and kinetic energy. The energy equivalence principle is then utilized to calculate the elasticity and inertia matrices, and dynamics equations are established using the finite element method. Subsequently, an IEBM is constructed by employing the particle swarm optimization approach to determine the correction coefficients with the truss natural frequency as the optimization target. The natural vibration characteristics of the structure are estimated for various material properties. Compared with the full-scale finite element model, the EBM reaches a maximum error of 80% for a low modulus of elasticity, while the maximum error of the IEBM is less than 2% for any given parameters, indicating its superior accuracy to the EBM.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"36 12","pages":"Pages 297-308"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123002200/pdfft?md5=58a6d0351d63b426b944cb2dbcf8254b&pid=1-s2.0-S1000936123002200-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123002200","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Space truss structures are essential components for space-based remote sensing loads with high spatial and temporal resolutions. To achieve high-precision vibration control, an accurate and efficient dynamics model is essential. In addition to the current equivalent beam model (EBM) based on the classical continuum theory, an improved equivalent beam model (IEBM) is proposed that considers the impact of the distinction between trusses and beams on torsional and shear deformations, as well as the impact of shear deformation on flexural rigidity. According to the displacement expressions of spatial beams, torsional, shear, and bending correction coefficients are introduced to derive expressions of strain energy and kinetic energy. The energy equivalence principle is then utilized to calculate the elasticity and inertia matrices, and dynamics equations are established using the finite element method. Subsequently, an IEBM is constructed by employing the particle swarm optimization approach to determine the correction coefficients with the truss natural frequency as the optimization target. The natural vibration characteristics of the structure are estimated for various material properties. Compared with the full-scale finite element model, the EBM reaches a maximum error of 80% for a low modulus of elasticity, while the maximum error of the IEBM is less than 2% for any given parameters, indicating its superior accuracy to the EBM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型周期类梁空间桁架结构的改进等效梁模型
空间桁架结构是具有高空间和时间分辨率的天基遥感载荷的重要组成部分。要实现高精度的振动控制,精确高效的动力学模型至关重要。除了目前基于经典连续性理论的等效梁模型(EBM)之外,我们还提出了一种改进的等效梁模型(IEBM),该模型考虑了桁架和梁之间的区别对扭转和剪切变形的影响,以及剪切变形对弯曲刚度的影响。根据空间梁的位移表达式,引入扭转、剪切和弯曲修正系数,得出应变能和动能的表达式。然后利用能量等效原理计算弹性矩阵和惯性矩阵,并使用有限元法建立动力学方程。随后,以桁架固有频率为优化目标,采用粒子群优化方法确定修正系数,从而构建了 IEBM。针对不同的材料特性,对结构的自然振动特性进行了估算。与全尺寸有限元模型相比,EBM 在弹性模量较低时的最大误差达到 80%,而 IEBM 在任何给定参数下的最大误差均小于 2%,表明其精度优于 EBM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Aeronautics
Chinese Journal of Aeronautics 工程技术-工程:宇航
CiteScore
10.00
自引率
17.50%
发文量
3080
审稿时长
55 days
期刊介绍: Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.
期刊最新文献
Editorial Board - Inside Front Cover Table of Content Inhibiting plastic tensile instability of non-symmetric thin-walled shell component via increasing regional metal inflow based on heterogeneous pressure-carrying medium Technologies and studies of gas exchange in two-stroke aircraft piston engine: A review Mechanism of capture section affecting an intake for atmosphere-breathing electric propulsion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1