Previous interaction with phytopathogenic bacteria alters the response of Arabidopsis against Tetranychus urticae herbivory

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Interactions Pub Date : 2022-12-29 DOI:10.1080/17429145.2022.2144651
Estefanía Contreras, J. Rodríguez-Herva, I. Díaz, E. López-Solanilla, Miguel Ángel Martínez
{"title":"Previous interaction with phytopathogenic bacteria alters the response of Arabidopsis against Tetranychus urticae herbivory","authors":"Estefanía Contreras, J. Rodríguez-Herva, I. Díaz, E. López-Solanilla, Miguel Ángel Martínez","doi":"10.1080/17429145.2022.2144651","DOIUrl":null,"url":null,"abstract":"ABSTRACT Plant response to individual biotic stresses depends on its physiological state when the challenge is perceived. Optimal conditions for infestation of the spider mite Tetranychus urticae are associated with high temperatures and scarce precipitation. Here, we analyze the impact of previous interactions with the hemibiotrophic bacteria Pseudomonas syringae pv. tomato DC3000 or the necrotroph Dickeya dadantii 3937 on Arabidopsis thaliana plants under mite optimal conditions. Our results showed that both bacterial strains inoculated at adverse low humidity conditions induced the expression of JA-related genes in the plant even when disease symptoms are not observed. This effect was more evident when heat-inactivated bacteria were used, but a significant reduction in mite leaf damage was only detected when plants were previously inoculated with the heat-inactivated hemibiotroph bacteria. These results indicate that bacterial interaction compromises the plant response to subsequent herbivore stress, even under suboptimal conditions for bacterial multiplication.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2144651","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Plant response to individual biotic stresses depends on its physiological state when the challenge is perceived. Optimal conditions for infestation of the spider mite Tetranychus urticae are associated with high temperatures and scarce precipitation. Here, we analyze the impact of previous interactions with the hemibiotrophic bacteria Pseudomonas syringae pv. tomato DC3000 or the necrotroph Dickeya dadantii 3937 on Arabidopsis thaliana plants under mite optimal conditions. Our results showed that both bacterial strains inoculated at adverse low humidity conditions induced the expression of JA-related genes in the plant even when disease symptoms are not observed. This effect was more evident when heat-inactivated bacteria were used, but a significant reduction in mite leaf damage was only detected when plants were previously inoculated with the heat-inactivated hemibiotroph bacteria. These results indicate that bacterial interaction compromises the plant response to subsequent herbivore stress, even under suboptimal conditions for bacterial multiplication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先前与植物病原菌的相互作用改变了拟南芥对二斑叶螨草食性的反应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
期刊最新文献
Transcriptome analysis of maize resistance to Fusarium verticillioides Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions Clarifying the effects of potential evapotranspiration and soil moisture on transpiration in secondary forests of birch in semi-arid regions of China Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato Root endophytic Phialocephala fortinii and Talaromyces verruculosus enhance growth and affect heavy metal tolerance of Miscanthus sinensis Andersson growing naturally at a mine site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1