T. F. Belloli, Laurindo Antonio Guasselli, T. Kuplich, Luís Fernando Naudi Ruiz, João Paulo Delapasse Simioni
{"title":"Classificação Baseada em Objeto de Tipologias de Cobertura Vegetal em Área Úmida Integrando Imagens Ópticas e SAR","authors":"T. F. Belloli, Laurindo Antonio Guasselli, T. Kuplich, Luís Fernando Naudi Ruiz, João Paulo Delapasse Simioni","doi":"10.14393/rbcv74n1-61277","DOIUrl":null,"url":null,"abstract":"Delinear com precisão os limites das Áreas Úmidas (AUs) e os padrões de cobertura vegetal é um passo essencial para a rápida avaliação e gestão destes ecossistemas. A Análise de Imagens Baseada em Objeto (Object-Based Image Analysis - OBIA) a partir de aprendizado de máquina e da integração de dados ópticos e de radar apresentam vantagens em relação a outras técnicas no mapeamento da cobertura vegetal nos ecossistemas de AUs. Este estudo tem como objetivo classificar tipologias de cobertura vegetal em áreas úmidas, integrando imagens ópticas e SAR dos satélites Sentinel-1 e 2A e o algoritmo Random Forest à classificação OBIA, utilizando como estudo de caso o Banhado Grande, localizado no Rio Grande do Sul. Como resultados, as polarizações VH e VV do Sentinel-1 obtiveram a maior relevância na classificação (18,6%). Entre as bandas ópticas as maiores relevâncias ocorreram para as bandas Borda Vermelha e Infravermelho Médio. A partir dos atributos ópticos, a classificação obteve acurácia de 86,2%. Quando inseridos os atributos SAR mais importantes, a acurácia aumentou para 91,3%. A classe Macrófitas Emergentes (ME), correspondente à espécie Scirpus giganteus, alcançou a melhor acurácia (91%), com área estimada em 1.507 ha. Concluímos que a integração de imagens aliada ao método de classificação possibilitou identificar e delimitar a extensão das tipologias vegetais e a área total do ecossistema. Os resultados acurados demostram que esta abordagem metodológica pode ser expandida para outras áreas úmidas palustres subtropicais.","PeriodicalId":36183,"journal":{"name":"Revista Brasileira de Cartografia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Cartografia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/rbcv74n1-61277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Delinear com precisão os limites das Áreas Úmidas (AUs) e os padrões de cobertura vegetal é um passo essencial para a rápida avaliação e gestão destes ecossistemas. A Análise de Imagens Baseada em Objeto (Object-Based Image Analysis - OBIA) a partir de aprendizado de máquina e da integração de dados ópticos e de radar apresentam vantagens em relação a outras técnicas no mapeamento da cobertura vegetal nos ecossistemas de AUs. Este estudo tem como objetivo classificar tipologias de cobertura vegetal em áreas úmidas, integrando imagens ópticas e SAR dos satélites Sentinel-1 e 2A e o algoritmo Random Forest à classificação OBIA, utilizando como estudo de caso o Banhado Grande, localizado no Rio Grande do Sul. Como resultados, as polarizações VH e VV do Sentinel-1 obtiveram a maior relevância na classificação (18,6%). Entre as bandas ópticas as maiores relevâncias ocorreram para as bandas Borda Vermelha e Infravermelho Médio. A partir dos atributos ópticos, a classificação obteve acurácia de 86,2%. Quando inseridos os atributos SAR mais importantes, a acurácia aumentou para 91,3%. A classe Macrófitas Emergentes (ME), correspondente à espécie Scirpus giganteus, alcançou a melhor acurácia (91%), com área estimada em 1.507 ha. Concluímos que a integração de imagens aliada ao método de classificação possibilitou identificar e delimitar a extensão das tipologias vegetais e a área total do ecossistema. Os resultados acurados demostram que esta abordagem metodológica pode ser expandida para outras áreas úmidas palustres subtropicais.