{"title":"PSO-aided fuzzy inference of material elastic constants with resonant ultrasound spectroscopy","authors":"Kai Yang, Jinbo Liu, T. Zhu, Hui Wang, Xinxin Zhu","doi":"10.1080/17415977.2020.1856102","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fuzzy inference method is applied to formulate an algorithm capable of estimating material elastic constants (ECs) of a specimen by solving an inverse problem with a group of measured resonance frequencies obtained via Resonant Ultrasound Spectroscopy (RUS). The algorithm is validated with RUS data from a specimen of polycrystalline aluminium alloy. Then the algorithm is found to be sensitive to the initial ECs by processing RUS data from a specimen of fine-grain polycrystalline Ti–6Al–4V, the same as the Levenberg–Marquardt (L–M) method popularly used in solving inverse problems. To overcome such a drawback, a hybrid method of Particle Swarm Optimization (PSO) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is proposed. And it is used to generate several groups of initial ECs for the fuzzy inference method. There is a trade-off between computational time and accurately estimated ECs, since the hybrid method needs more time to directly find out accurate ECs.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1429 - 1444"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2020.1856102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2020.1856102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Fuzzy inference method is applied to formulate an algorithm capable of estimating material elastic constants (ECs) of a specimen by solving an inverse problem with a group of measured resonance frequencies obtained via Resonant Ultrasound Spectroscopy (RUS). The algorithm is validated with RUS data from a specimen of polycrystalline aluminium alloy. Then the algorithm is found to be sensitive to the initial ECs by processing RUS data from a specimen of fine-grain polycrystalline Ti–6Al–4V, the same as the Levenberg–Marquardt (L–M) method popularly used in solving inverse problems. To overcome such a drawback, a hybrid method of Particle Swarm Optimization (PSO) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is proposed. And it is used to generate several groups of initial ECs for the fuzzy inference method. There is a trade-off between computational time and accurately estimated ECs, since the hybrid method needs more time to directly find out accurate ECs.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.