Lal Dhar Mishra, Ankit Agarwal, Atul K Singh, Kamath Sriganesh
{"title":"Paving the way to environment-friendly greener anesthesia.","authors":"Lal Dhar Mishra, Ankit Agarwal, Atul K Singh, Kamath Sriganesh","doi":"10.4103/joacp.joacp_283_22","DOIUrl":null,"url":null,"abstract":"<p><p>Health-care settings have an important responsibility toward environmental health and safety. The operating room is a major source of environmental pollution within a hospital. Inhalational agents and nitrous oxide are the commonly used gases during general anesthesia for surgeries, especially in the developing world. These greenhouse gases contribute adversely to the environmental health both inside the operating room and in the outside atmosphere. Impact of these anesthetic agents depends on the total consumption, characteristics of individual agents, and gas flows, with higher levels increasing the environmental adverse effects. The inimical impact of nitrous oxide is higher due to its longer atmospheric half-life and potential for destruction of the ozone layer. Anesthesiologist of today has a choice in the selection of anesthetic agents. Prudent decisions will help in mitigating environmental pollution and contributing positively to a greener planet. Therefore, a shift from inhalational to intravenous-based technique will reduce the carbon footprint of anesthetic agents and their impact on global climate. Propofol forms the mainstay of intravenous anesthesia technique and is a proven drug for anesthetic induction and maintenance. Anesthesiologists should appreciate growing concerns about the role of inhalational anesthetics on the environment and join the cause of environmental responsibility. In this narrative review, we revisit the pharmacological and pharmacokinetic considerations, clinical uses, and discuss the merits of propofol-based intravenous anesthesia over inhalational anesthesia in terms of environmental effects. Increased awareness about the environmental impact and adoption of newer, versatile, and user-friendly modalities of intravenous anesthesia administration will pave the way for greener anesthesia practice.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"9-14"},"PeriodicalIF":17.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/joacp.joacp_283_22","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Health-care settings have an important responsibility toward environmental health and safety. The operating room is a major source of environmental pollution within a hospital. Inhalational agents and nitrous oxide are the commonly used gases during general anesthesia for surgeries, especially in the developing world. These greenhouse gases contribute adversely to the environmental health both inside the operating room and in the outside atmosphere. Impact of these anesthetic agents depends on the total consumption, characteristics of individual agents, and gas flows, with higher levels increasing the environmental adverse effects. The inimical impact of nitrous oxide is higher due to its longer atmospheric half-life and potential for destruction of the ozone layer. Anesthesiologist of today has a choice in the selection of anesthetic agents. Prudent decisions will help in mitigating environmental pollution and contributing positively to a greener planet. Therefore, a shift from inhalational to intravenous-based technique will reduce the carbon footprint of anesthetic agents and their impact on global climate. Propofol forms the mainstay of intravenous anesthesia technique and is a proven drug for anesthetic induction and maintenance. Anesthesiologists should appreciate growing concerns about the role of inhalational anesthetics on the environment and join the cause of environmental responsibility. In this narrative review, we revisit the pharmacological and pharmacokinetic considerations, clinical uses, and discuss the merits of propofol-based intravenous anesthesia over inhalational anesthesia in terms of environmental effects. Increased awareness about the environmental impact and adoption of newer, versatile, and user-friendly modalities of intravenous anesthesia administration will pave the way for greener anesthesia practice.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.