Cora De Gol , Silvia Snel , Ysamar Rodriguez , Michael Beyrer
{"title":"Gelling capacity of cell-disrupted Chlorella vulgaris and its texture effect in extruded meat substitutes","authors":"Cora De Gol , Silvia Snel , Ysamar Rodriguez , Michael Beyrer","doi":"10.1016/j.foostr.2023.100332","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae attract increasing interest in enhancing the nutritional values of plant-based foods. However, alterations in the final product’s color (by green algae) and mushy texture can be induced. In this study, we incorporated yellow <em>Chlorella vulgaris</em> (Cv) in pea protein-based meat substitutes and aimed to minimize properties alteration by using wet and disrupted Cv biomass. The cell wall disruption, done by high-pressure homogenization (HPH) at 150 MPa and initial biomass temperature below 10 °C, significantly increased the gelation capacity. The effect was confirmed by (i) a 10x increase in the apparent viscosity of 14% (w/w) Cv suspensions, and (ii) a 2x increase in the storage modulus (G’) of 9:1 (w/w) pea protein isolate - Cv gels. Furthermore, the HPH-treated Cv was successfully incorporated (10% (w/w)) into pea protein-based meat substitutes produced with high-moisture extrusion cooking without altering their visual appearance, hardness, or anisotropy index. Finally, spray drying or fractionation steps of the HPH-treated Cv did not improve protein gels, or meat substitutes produced thereof. This study demonstrated that disrupted Cv is a promising nutritious and sustainable ingredient for meat substitutes.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100332"},"PeriodicalIF":5.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000254","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Microalgae attract increasing interest in enhancing the nutritional values of plant-based foods. However, alterations in the final product’s color (by green algae) and mushy texture can be induced. In this study, we incorporated yellow Chlorella vulgaris (Cv) in pea protein-based meat substitutes and aimed to minimize properties alteration by using wet and disrupted Cv biomass. The cell wall disruption, done by high-pressure homogenization (HPH) at 150 MPa and initial biomass temperature below 10 °C, significantly increased the gelation capacity. The effect was confirmed by (i) a 10x increase in the apparent viscosity of 14% (w/w) Cv suspensions, and (ii) a 2x increase in the storage modulus (G’) of 9:1 (w/w) pea protein isolate - Cv gels. Furthermore, the HPH-treated Cv was successfully incorporated (10% (w/w)) into pea protein-based meat substitutes produced with high-moisture extrusion cooking without altering their visual appearance, hardness, or anisotropy index. Finally, spray drying or fractionation steps of the HPH-treated Cv did not improve protein gels, or meat substitutes produced thereof. This study demonstrated that disrupted Cv is a promising nutritious and sustainable ingredient for meat substitutes.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.