Cryptanalysis of various images based on neural networks with leakage and time varying delays

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY International Journal of Nonlinear Sciences and Numerical Simulation Pub Date : 2022-10-11 DOI:10.1515/ijnsns-2021-0444
M. Manikandan, S. Ong
{"title":"Cryptanalysis of various images based on neural networks with leakage and time varying delays","authors":"M. Manikandan, S. Ong","doi":"10.1515/ijnsns-2021-0444","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this paper is to provide an efficient image encryption for each and every single person in order to secure their own records while saving them in social networks. We have formulated the delayed fuzzy cellular neural networks (FCNNs) with suitable keys that are the values of the parameters of FCNNs and obtain the irregular dynamical signal (solution) which encrypts the images. We have utilized entirely 42 parameters as a key sensitivity in the order of 10−15 among them three elements of initial condition parameters are sensitive to the order of 10−14. Lastly, comparison results are provided with the existing literature. The measurements show that the proposed algorithm is a novel overall solution for image encryption.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"1539 - 1551"},"PeriodicalIF":1.4000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0444","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The main objective of this paper is to provide an efficient image encryption for each and every single person in order to secure their own records while saving them in social networks. We have formulated the delayed fuzzy cellular neural networks (FCNNs) with suitable keys that are the values of the parameters of FCNNs and obtain the irregular dynamical signal (solution) which encrypts the images. We have utilized entirely 42 parameters as a key sensitivity in the order of 10−15 among them three elements of initial condition parameters are sensitive to the order of 10−14. Lastly, comparison results are provided with the existing literature. The measurements show that the proposed algorithm is a novel overall solution for image encryption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于泄漏和时变延迟的神经网络的各种图像密码分析
本文的主要目的是为每个人提供一种有效的图像加密,以便在将自己的记录保存在社交网络中时保护自己的记录。我们用合适的密钥作为延迟模糊细胞神经网络(fcnn)的参数值,构造了延迟模糊细胞神经网络(fcnn),得到了对图像进行加密的不规则动态信号(解)。我们总共使用了42个参数作为关键灵敏度,其量级为10−15,其中初始条件参数的三个元素的灵敏度为10−14。最后,与已有文献进行了对比。实验结果表明,该算法是一种新颖的图像加密整体解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
期刊最新文献
Frontmatter Frontmatter Frontmatter Frontmatter Frontmatter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1