U. M. A. Devaraja, Chamini Lakshika Wickramarathna Dissanayake, D. Gunarathne, Wei-hsin Chen
{"title":"Oxidative torrefaction and torrefaction-based biorefining of biomass: a critical review","authors":"U. M. A. Devaraja, Chamini Lakshika Wickramarathna Dissanayake, D. Gunarathne, Wei-hsin Chen","doi":"10.18331/brj2022.9.3.4","DOIUrl":null,"url":null,"abstract":"Torrefaction is a vital pretreatment technology for thermochemical biorefinery applications like pyrolysis, gasification, and liquefaction. Oxidative torrefaction, an economical version of torrefaction, has recently gained much attention in the renewable energy field. Recent literature on inert and oxidative torrefaction was critically reviewed in this work to provide necessary guidance for future research and commercial implementations. The critical performance parameters of torrefaction for thermochemical biorefinery applications, such as solid yield, energy yield, carbon enhancement, higher heating value (HHV) enhancement, and energy-mass co-benefit index (EMCI), were also analyzed. Agricultural waste, woody biomass, and microalgae were considered. The analysis reveals that woody biomass could equally benefit from oxidative or inert torrefaction. In contrast, inert torrefaction was found more suitable for agricultural wastes and microalgae. Using flue gas as the oxidative torrefaction medium and waste biomass as the feedstock could achieve a circular economy, improving the sustainability of oxidative torrefaction for thermochemical biorefineries. The significant challenges in oxidative torrefaction include high ash content in torrefied agricultural waste, the oxidative thermal runaway of fibrous biomass during torrefaction, temperature control, and scale-up in reactors. Some proposed solutions to address these challenges are combined washing and torrefaction pretreatment, balancing oxygen content, temperature, and residence time, depending on the biomass type, and recirculating torrefaction gases.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2022.9.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 16
Abstract
Torrefaction is a vital pretreatment technology for thermochemical biorefinery applications like pyrolysis, gasification, and liquefaction. Oxidative torrefaction, an economical version of torrefaction, has recently gained much attention in the renewable energy field. Recent literature on inert and oxidative torrefaction was critically reviewed in this work to provide necessary guidance for future research and commercial implementations. The critical performance parameters of torrefaction for thermochemical biorefinery applications, such as solid yield, energy yield, carbon enhancement, higher heating value (HHV) enhancement, and energy-mass co-benefit index (EMCI), were also analyzed. Agricultural waste, woody biomass, and microalgae were considered. The analysis reveals that woody biomass could equally benefit from oxidative or inert torrefaction. In contrast, inert torrefaction was found more suitable for agricultural wastes and microalgae. Using flue gas as the oxidative torrefaction medium and waste biomass as the feedstock could achieve a circular economy, improving the sustainability of oxidative torrefaction for thermochemical biorefineries. The significant challenges in oxidative torrefaction include high ash content in torrefied agricultural waste, the oxidative thermal runaway of fibrous biomass during torrefaction, temperature control, and scale-up in reactors. Some proposed solutions to address these challenges are combined washing and torrefaction pretreatment, balancing oxygen content, temperature, and residence time, depending on the biomass type, and recirculating torrefaction gases.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.