L. Nadelson, Benjamin C. Heddy, Suzanne H. Jones, Gita Taasoobshirazi, M. Johnson
{"title":"Conceptual Change in Science Teaching and Learning: Introducing the Dynamic Model of Conceptual Change","authors":"L. Nadelson, Benjamin C. Heddy, Suzanne H. Jones, Gita Taasoobshirazi, M. Johnson","doi":"10.17583/IJEP.2018.3349","DOIUrl":null,"url":null,"abstract":"Conceptual change can be a challenging process, particularly in science education where many of the concepts are complex, controversial, or counter-intuitive. Yet, conceptual change is fundamental to science learning, which suggests science educators and science education researchers need models to effectively address and investigate conceptual change. Consideration of the current research and extant models of conceptual change reflect a need for a holistic, comprehensive, and dynamic model of conceptual change. In response, we developed the Dynamic Model of Conceptual Change (DMCC), which uses multiple lines of research that explore the variables influencing conceptual change and the dynamic interactions that take place during the conceptual change process in science teaching and learning. Unique to the DMCC is the potential for iterations, regression, enter and exit points at various stages of the conceptual change process, and the influences of message recognition, message engagement and processing, and the nature of the resulting conceptual change. The DMCC contains elements from extant models along with previously un-emphasized influential conceptual change variables such as culture, society, attitude, practices, and personal epistemology. We constructed the DMCC to provide science educators and researchers a more holistic framework for exploring conceptual change in science instruction and learning.","PeriodicalId":44173,"journal":{"name":"International Journal of Educational Psychology","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Educational Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17583/IJEP.2018.3349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, EDUCATIONAL","Score":null,"Total":0}
引用次数: 59
Abstract
Conceptual change can be a challenging process, particularly in science education where many of the concepts are complex, controversial, or counter-intuitive. Yet, conceptual change is fundamental to science learning, which suggests science educators and science education researchers need models to effectively address and investigate conceptual change. Consideration of the current research and extant models of conceptual change reflect a need for a holistic, comprehensive, and dynamic model of conceptual change. In response, we developed the Dynamic Model of Conceptual Change (DMCC), which uses multiple lines of research that explore the variables influencing conceptual change and the dynamic interactions that take place during the conceptual change process in science teaching and learning. Unique to the DMCC is the potential for iterations, regression, enter and exit points at various stages of the conceptual change process, and the influences of message recognition, message engagement and processing, and the nature of the resulting conceptual change. The DMCC contains elements from extant models along with previously un-emphasized influential conceptual change variables such as culture, society, attitude, practices, and personal epistemology. We constructed the DMCC to provide science educators and researchers a more holistic framework for exploring conceptual change in science instruction and learning.