Sample structure prediction from measured XPS data using Bayesian estimation and SESSA simulator

IF 1.8 4区 物理与天体物理 Q2 SPECTROSCOPY Journal of Electron Spectroscopy and Related Phenomena Pub Date : 2023-08-01 DOI:10.1016/j.elspec.2023.147370
Hiroshi Shinotsuka , Kenji Nagata , Malinda Siriwardana , Hideki Yoshikawa , Hayaru Shouno , Masato Okada
{"title":"Sample structure prediction from measured XPS data using Bayesian estimation and SESSA simulator","authors":"Hiroshi Shinotsuka ,&nbsp;Kenji Nagata ,&nbsp;Malinda Siriwardana ,&nbsp;Hideki Yoshikawa ,&nbsp;Hayaru Shouno ,&nbsp;Masato Okada","doi":"10.1016/j.elspec.2023.147370","DOIUrl":null,"url":null,"abstract":"<div><p>We have developed a framework for solving the inverse problem of X-ray photoelectron spectroscopy (XPS) by incorporating an XPS simulator, Simulation of Electron Spectra for Surface Analysis (SESSA), into Bayesian estimation to obtain an overall picture of the distribution of plausible sample structures from the measured XPS data. The Bayesian estimation framework automated the very tedious task of adjusting the sample structure parameters manually in the simulator. As an example, we performed virtual experiments of angle-resolved XPS on a four-layered sample, and we estimated the sample structures based on the XPS intensity data obtained from experiments. We succeeded in not only obtaining an optimal solution, but also visualizing the distribution of the solution through the Bayesian posterior probability distribution.</p></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"267 ","pages":"Article 147370"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204823000877","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a framework for solving the inverse problem of X-ray photoelectron spectroscopy (XPS) by incorporating an XPS simulator, Simulation of Electron Spectra for Surface Analysis (SESSA), into Bayesian estimation to obtain an overall picture of the distribution of plausible sample structures from the measured XPS data. The Bayesian estimation framework automated the very tedious task of adjusting the sample structure parameters manually in the simulator. As an example, we performed virtual experiments of angle-resolved XPS on a four-layered sample, and we estimated the sample structures based on the XPS intensity data obtained from experiments. We succeeded in not only obtaining an optimal solution, but also visualizing the distribution of the solution through the Bayesian posterior probability distribution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯估计和SESSA模拟器对实测XPS数据进行样本结构预测
我们开发了一个框架来解决x射线光电子能谱(XPS)的反问题,通过将XPS模拟器,模拟表面分析电子能谱(SESSA)纳入贝叶斯估计,从测量的XPS数据中获得合理样品结构分布的总体情况。贝叶斯估计框架自动完成了在模拟器中手动调整样本结构参数的繁琐任务。以四层样品为例,进行了角度分辨XPS的虚拟实验,并根据实验得到的XPS强度数据对样品结构进行了估计。我们不仅成功地获得了最优解,而且通过贝叶斯后验概率分布将解的分布可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
64
审稿时长
60 days
期刊介绍: The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.
期刊最新文献
Theory of circular dichroism in angle- and spin-resolved photoemission from the surface state on Bi(111) Atomic data, and ionization cross-sections by electron impact of tungsten ions, W LXV Elucidating the structure of amorphous-carbon films containing carbide and non-carbide-forming metals Encoder–decoder neural networks in interpretation of X-ray spectra Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1