Action rate models for predicting actions in soccer

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2022-03-02 DOI:10.1007/s10182-022-00435-x
Uwe Dick, Ulf Brefeld
{"title":"Action rate models for predicting actions in soccer","authors":"Uwe Dick,&nbsp;Ulf Brefeld","doi":"10.1007/s10182-022-00435-x","DOIUrl":null,"url":null,"abstract":"<div><p>We present a data-driven approach to predict the next action in soccer. We focus on passing actions of the ball possessing player and aim to forecast the pass itself and when, in time, the pass will be played. At the same time, our model estimates the probability that the player loses possession of the ball before she can perform the action. Our approach consists of parameterized exponential rate models for all possible actions that are adapted to historic data with graph recurrent neural networks to account for inter-dependencies of the output space (i.e., the possible actions). We report on empirical results.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"107 1-2","pages":"29 - 49"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00435-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00435-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

We present a data-driven approach to predict the next action in soccer. We focus on passing actions of the ball possessing player and aim to forecast the pass itself and when, in time, the pass will be played. At the same time, our model estimates the probability that the player loses possession of the ball before she can perform the action. Our approach consists of parameterized exponential rate models for all possible actions that are adapted to historic data with graph recurrent neural networks to account for inter-dependencies of the output space (i.e., the possible actions). We report on empirical results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测足球动作的动作率模型
我们提出了一种数据驱动的方法来预测足球比赛的下一步动作。我们关注有球球员的传球动作,目的是预测传球本身以及何时、何时传球。同时,我们的模型估计了球员在执行动作之前失去球权的概率。我们的方法包括参数化指数率模型,用于所有可能的动作,这些动作适用于使用图递归神经网络的历史数据,以解释输出空间的相互依赖性(即可能的动作)。我们报告实证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Editorial Machine Learning Approach for Analyzing Mixed Case Interval Censored Data with a Cured Subgroup. Basketball players performance measurement with algorithmic survival data analysis Testing for causal effect for binary data when propensity scores are estimated through Bayesian Networks Forecasting time series by long-memory models for count data with an application to price jumps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1