{"title":"Response of multistory steel structure subjected to differential settlements of its foundation","authors":"A. Hanna, Wenxue Chen","doi":"10.1108/ijsi-08-2021-0083","DOIUrl":null,"url":null,"abstract":"PurposeThis article aims to address an outstanding problem dealing with the structure and its foundation.Design/methodology/approachDifferential settlement between foundation units of a multistory structure has been responsible for serious damage to buildings and often catastrophic failure and loss of life. The dynamic changes in the loading conditions of the structure, and the variability of the underlying ground due to environmental changes, are causing the undesirable differential settlement, which is manifested in the form of additional stresses in beams, columns and distortion of the structure elements. The structural response to the differential settlements depends on the type of the structure (concrete or steel), type of beam-to-column connections (rigid or semi-rigid), number of floors and the spans of the beams in the building. This paper presents the results of a numerical model, which was developed using the finite element technique and the software “ABAQUS” to analyze a nine-floor steel structure. The model was capable to capture the stresses and the strains developed in beams and columns and the relationships of moment–settlement and rotation–settlement for the structural during the differential settlement of its foundation. After validating of the model, data were produced for a wide range of governing parameters for rigid and semi-rigid connections and accordingly the mode of failure. The results can be used as a guideline for the design of steel structures.FindingsResults are useful for those design steel structures.Research limitations/implicationsThis study is based on the experimental and numerical data of the authors.Practical implicationsThis study provides a guideline for the design of steel structures.Originality/valueThis is the original research developed by the authors.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-08-2021-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeThis article aims to address an outstanding problem dealing with the structure and its foundation.Design/methodology/approachDifferential settlement between foundation units of a multistory structure has been responsible for serious damage to buildings and often catastrophic failure and loss of life. The dynamic changes in the loading conditions of the structure, and the variability of the underlying ground due to environmental changes, are causing the undesirable differential settlement, which is manifested in the form of additional stresses in beams, columns and distortion of the structure elements. The structural response to the differential settlements depends on the type of the structure (concrete or steel), type of beam-to-column connections (rigid or semi-rigid), number of floors and the spans of the beams in the building. This paper presents the results of a numerical model, which was developed using the finite element technique and the software “ABAQUS” to analyze a nine-floor steel structure. The model was capable to capture the stresses and the strains developed in beams and columns and the relationships of moment–settlement and rotation–settlement for the structural during the differential settlement of its foundation. After validating of the model, data were produced for a wide range of governing parameters for rigid and semi-rigid connections and accordingly the mode of failure. The results can be used as a guideline for the design of steel structures.FindingsResults are useful for those design steel structures.Research limitations/implicationsThis study is based on the experimental and numerical data of the authors.Practical implicationsThis study provides a guideline for the design of steel structures.Originality/valueThis is the original research developed by the authors.