{"title":"Mitigating tsunami effects on buildings via novel use of discrete onshore protection systems","authors":"G. Pringgana, L. Cunningham, B. Rogers","doi":"10.1080/21664250.2023.2170690","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study investigates the effectiveness of a new discrete V-shaped coastal barrier (V-wall) to reduce multiple tsunami-bore impacts on a group of idealized coastal structures. The performance comparison has been made between a baseline model (BM), continuous straight wall models (SW), and V-wall (VW) models. A number of key parameters including the barrier height and length along with the arrangement of the landward structures are investigated numerically using the 3-D smoothed particle hydrodynamics (SPH) approach. From the SPH models output the bore velocity, maximum force, total impulse, and pressure distribution on the structures are examined. The results indicate that the V-walls can provide a similar level of protection to continuous seawalls of the same height and hence can be considered as an economic alternative to protection in tsunami prone regions. However, in order to gain the greatest benefit from the V-walls, strategic planning of the position and orientation of landward structures and the walls themselves are needed to avoid bore flow focusing and reflection effects.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2170690","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT This study investigates the effectiveness of a new discrete V-shaped coastal barrier (V-wall) to reduce multiple tsunami-bore impacts on a group of idealized coastal structures. The performance comparison has been made between a baseline model (BM), continuous straight wall models (SW), and V-wall (VW) models. A number of key parameters including the barrier height and length along with the arrangement of the landward structures are investigated numerically using the 3-D smoothed particle hydrodynamics (SPH) approach. From the SPH models output the bore velocity, maximum force, total impulse, and pressure distribution on the structures are examined. The results indicate that the V-walls can provide a similar level of protection to continuous seawalls of the same height and hence can be considered as an economic alternative to protection in tsunami prone regions. However, in order to gain the greatest benefit from the V-walls, strategic planning of the position and orientation of landward structures and the walls themselves are needed to avoid bore flow focusing and reflection effects.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.