{"title":"Study of crystal-amorphous phase transition and morphologies of metal nanoparticle Fe under annealing","authors":"P. H. Kien","doi":"10.1504/IJMMP.2019.10023321","DOIUrl":null,"url":null,"abstract":"The present work investigates the crystal-amorphous phase transition and morphologies of metal nanoparticles Fe (NPs) using means of molecular dynamics (MD) simulation. Tracing the number of crystal atoms and the analysis of radial distribution functions, we found that the amorphous Fe NP is transformed into bcc crystal one when it was annealed for long times at 900 K. At the early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which creates the stable clusters in the core of NP and to spread into the surface of NP. Based on the mean potential energy per atom analysis and MD data visualisation technique, the effect of B atoms that prevent the growth of crystallisation as well as the different morphologies of Fe and FeB NPs have been investigated in detail.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMP.2019.10023321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The present work investigates the crystal-amorphous phase transition and morphologies of metal nanoparticles Fe (NPs) using means of molecular dynamics (MD) simulation. Tracing the number of crystal atoms and the analysis of radial distribution functions, we found that the amorphous Fe NP is transformed into bcc crystal one when it was annealed for long times at 900 K. At the early stage of the annealing, small nuclei form in different places of NP and dissolve for short times. After long times some nuclei form and gather nearby which creates the stable clusters in the core of NP and to spread into the surface of NP. Based on the mean potential energy per atom analysis and MD data visualisation technique, the effect of B atoms that prevent the growth of crystallisation as well as the different morphologies of Fe and FeB NPs have been investigated in detail.
期刊介绍:
IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.