Bayesian Nonparametric Bivariate Survival Regression for Current Status Data

IF 2.5 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2020-09-14 DOI:10.1214/22-ba1346
Giorgio Paulon, Peter Muller, V. S. Y. Rosas
{"title":"Bayesian Nonparametric Bivariate Survival Regression for Current Status Data","authors":"Giorgio Paulon, Peter Muller, V. S. Y. Rosas","doi":"10.1214/22-ba1346","DOIUrl":null,"url":null,"abstract":"We consider nonparametric inference for event time distributions based on current status data. We show that in this scenario conventional mixture priors, including the popular Dirichlet process mixture prior, lead to biologically uninterpretable results as they unnaturally skew the probability mass for the event times toward the extremes of the observed data. Simple assumptions on dependent censoring can fix the problem. We then extend the discussion to bivariate current status data with partial ordering of the two outcomes. In addition to dependent censoring, we also exploit some minimal known structure relating the two event times. We design a Markov chain Monte Carlo algorithm for posterior simulation. Applied to a recurrent infection study, the method provides novel insights into how symptoms-related hospital visits are affected by covariates.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1346","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider nonparametric inference for event time distributions based on current status data. We show that in this scenario conventional mixture priors, including the popular Dirichlet process mixture prior, lead to biologically uninterpretable results as they unnaturally skew the probability mass for the event times toward the extremes of the observed data. Simple assumptions on dependent censoring can fix the problem. We then extend the discussion to bivariate current status data with partial ordering of the two outcomes. In addition to dependent censoring, we also exploit some minimal known structure relating the two event times. We design a Markov chain Monte Carlo algorithm for posterior simulation. Applied to a recurrent infection study, the method provides novel insights into how symptoms-related hospital visits are affected by covariates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现状数据的贝叶斯非参数双变量生存回归
我们考虑基于当前状态数据的事件时间分布的非参数推理。我们表明,在这种情况下,传统的混合先验,包括流行的狄利克雷过程混合先验,会导致生物学上无法解释的结果,因为它们不自然地将事件时间的概率质量向观测数据的极端倾斜。对依赖审查的简单假设可以解决这个问题。然后,我们将讨论扩展到具有两个结果的偏序的双变量现状数据。除了依赖审查之外,我们还利用了一些与两个事件时间相关的最小已知结构。我们设计了一种用于后验模拟的马尔可夫链蒙特卡罗算法。该方法应用于复发性感染研究,为症状相关的医院就诊如何受到协变量的影响提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Quantum Speedups for Multiproposal MCMC. Nonparametric Bayes Differential Analysis of Multigroup DNA Methylation Data. Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity. Gridding and Parameter Expansion for Scalable Latent Gaussian Models of Spatial Multivariate Data. Exploiting Multivariate Network Meta-Analysis: A Calibrated Bayesian Composite Likelihood Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1