APPLICATION OF AN OPTIMAL CONTROL ALGORITHM FOR A GYROSCOPE SYSTEM OF A HOMING AIR-TO-AIR MISSILE

IF 0.8 Q3 ENGINEERING, AEROSPACE Aviation Pub Date : 2021-04-13 DOI:10.3846/AVIATION.2021.13899
I. Krzysztofik, Z. Koruba
{"title":"APPLICATION OF AN OPTIMAL CONTROL ALGORITHM FOR A GYROSCOPE SYSTEM OF A HOMING AIR-TO-AIR MISSILE","authors":"I. Krzysztofik, Z. Koruba","doi":"10.3846/AVIATION.2021.13899","DOIUrl":null,"url":null,"abstract":"Missile homing precision depends mainly on the correct determination of the current angle between the Gyroscope System Axis (GSA) and the target line-of-sight (LOS). A gyroscope automatic control system shall ensure spontaneous levelling of this angle, hence, constant homing of the gyroscope system axis in on the LOS, i.e. tracking the target by the head. The available literature on the subject lacks a description of how to use the controlled gyro system in the process of guiding the missile onto the target. In this paper, the authors present the original development of an optimal control algorithm for a gyro system with a square quality indicator in conditions of interference and kinematic influence of the missile deck. A comparative analysis of the LQR with the PD regulator was made. PD regulator parameters are also selected optimally, using the Golubencev method, so that the transition process of the homing system fades over a minimal time, while simultaneously ensuring the overlapping of the gyroscope axis with the target line-of-sight. The computer simulation results have been obtained in a Matlab-Simulink environment and are presented in a graphic form.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":"25 1","pages":"41-49"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/AVIATION.2021.13899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

Abstract

Missile homing precision depends mainly on the correct determination of the current angle between the Gyroscope System Axis (GSA) and the target line-of-sight (LOS). A gyroscope automatic control system shall ensure spontaneous levelling of this angle, hence, constant homing of the gyroscope system axis in on the LOS, i.e. tracking the target by the head. The available literature on the subject lacks a description of how to use the controlled gyro system in the process of guiding the missile onto the target. In this paper, the authors present the original development of an optimal control algorithm for a gyro system with a square quality indicator in conditions of interference and kinematic influence of the missile deck. A comparative analysis of the LQR with the PD regulator was made. PD regulator parameters are also selected optimally, using the Golubencev method, so that the transition process of the homing system fades over a minimal time, while simultaneously ensuring the overlapping of the gyroscope axis with the target line-of-sight. The computer simulation results have been obtained in a Matlab-Simulink environment and are presented in a graphic form.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制导空空导弹陀螺仪系统最优控制算法的应用
导弹寻的精度主要取决于陀螺仪系统轴(GSA)与目标视距(LOS)之间当前角度的正确确定。陀螺仪自动控制系统应确保该角度的自动调平,因此,陀螺仪系统轴在LOS上不断归一,即由头部跟踪目标。关于这个主题的现有文献缺乏如何在制导导弹到目标上的过程中使用受控陀螺系统的描述。本文提出了一种具有方形质量指示器的陀螺系统在导弹甲板干扰和运动影响下的最优控制算法。对LQR和PD调节器进行了比较分析。利用Golubencev方法对PD调节器参数进行了优化选择,使导引系统的过渡过程在最短时间内逐渐消失,同时保证陀螺仪轴与目标视线的重叠。在Matlab-Simulink环境下进行了计算机仿真,并以图形形式给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
期刊最新文献
DETERMINATION OF LOADS IN THE ULTRALIGHT HELICOPTER BLADES RATIONAL CONTROL BY TEMPERATURE IN VORTEX ENERGY SEPARATOR UNDER DESTABILIZING EFFECTS CUSTOMER-FOCUSED AIRCRAFT SEAT DESIGN: A CASE STUDY WITH AHP-QFD SAFETY MANAGEMENT SYSTEM AND HAZARDS IN THE AIRCRAFT MAINTENANCE INDUSTRY: A SYSTEMATIC LITERATURE REVIEW IMPLEMENTATION STUDY OF A PASSIVE SAFETY FEATURE IN THE RESCUE SYSTEMS OF SMALL AIRCRAFTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1